Orapuh Journal | Journal of Oral & Public Health
Phytochemical study and subacute toxicity in vivo evaluation of Phyllanthus odontadenius (Phyllanthaceae) aqueous extracts
PDF (English)

Comment citer

NSENDO , M.-K. O., Kikakedimau Nakweti, R., Mbozo, M. A., TABA, K.-M., Ngbolua, K.-T.-N., & LUYINDULA, N. S. (2025). Phytochemical study and subacute toxicity in vivo evaluation of Phyllanthus odontadenius (Phyllanthaceae) aqueous extracts. Orapuh Journal, 6(3), e1229. https://doi.org/10.4314/orapj.v6i3.29

Résumé

Introduction

Phyllanthus odontadenius is recognised for its rich composition of natural substances, notably secondary metabolites, which offer promising applications in pharmacology and the food industry.

Purpose

This study sought to identify the major secondary metabolites present in P. odontadenius and to assess the in vivo subacute toxicity of its aqueous extracts.

Methods

Aqueous and methanolic extracts of P. odontadenius samples collected from Kinshasa, Kongo-Central, and Kwango (Democratic Republic of the Congo) were subjected to phytochemical screening and thin-layer chromatography (TLC). Subacute toxicity of the aqueous extract was evaluated in Wistar albino rats administered 500 mg/kg body weight via oral gavage for 14 consecutive days. Body weights were measured before and after treatment. Post-treatment, the weights of the liver, heart, and kidneys were recorded, and biochemical markers (urea, creatinine, AST, ALT, GGT, and ALP) were analysed.

Results

Phytochemical analysis confirmed the presence of alkaloids, polyphenols, flavonoids, terpenes, anthocyanins, and steroids, while saponins were absent. A notable increase in body weight was observed in all rats. Organ weights varied across extract sources, with the liver from the Kenge group showing the highest weight (4.23 ± 0.04 g). Biochemical profiles showed slight to marked elevations in liver enzymes and kidney markers across treatment groups compared to controls. Particularly, the Kenge extract group recorded the highest AST (322.00 ± 36.68 U/L) and ALP (431.4 ± 32.23 U/L) levels, suggesting possible hepatic stress or damage.

Conclusion

Although P. odontadenius is traditionally used in herbal medicine, findings from this study suggest that chronic use of its aqueous extract may pose risks to sensitive organs, especially the liver. Further studies, including histological analysis and isolation of potential toxic constituents, are recommended to support its safe use.

https://doi.org/10.4314/orapj.v6i3.29
PDF (English)

Références

Asare, G. A., Addo, P., Bugyei, K., Gyan, B., Adjei, S., Otu-Nyarko, L. S., Wiredu, E. K., & Nyarko, A. (2011). Acute toxicity studies of aqueous leaf extract of Phyllanthus niruri. Interdisciplinary Toxicology, 4(4), 206–210. https://doi.org/10.2478/v10102-011-0031-9

Assi, M. A., Hezmee, M. N., Haron, A. W., Sabri, M. Y., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9(6), 660–671. https://doi.org/10.14202/vetworld.2016.660-671

Ayoola, G., Coker, H., Adesegun, S., Adepoju-Bello, A., Obaweya, K., Ezennia, E., & Atangbayila, T. (2008). Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in South Western Nigeria. Tropical Journal of Pharmaceutical Research, 7(3), 1019–1024. https://doi.org/10.4314/tjpr.v7i3.14686

Bakare, A. A., Adedokun, L. A., Oguntolu, G. O., & Amao, A. A. (2015). In vivo evaluation of genetic and systemic toxicity of aqueous extracts of Phyllanthus amarus in mice and rats. International Journal of Toxicology and Pharmacological Research, 7(4).

Bidie, A. P., Banga, B., Adou, F., Yapol, J. D. N., & Djamani, A. J. (2011). Activités antioxydante de dix plantes médicinales de la pharmacopée ivoirienne. Sciences et Nature, 1(1), 1–11.

Borel, J.-P. (1981). Comment prescrire et interpréter un examen de biochimie (4th ed.). Maloine.

Boullard, B. (2001). Dictionnaire des plantes médicinales du Monde: croyances et réalités. Estem De Bock.

Campos de Lima e Silva, T., Veras Filho, J., Cavalcanti de Amorim, E. L., Antonia de Souza, I., Paulino de Albuquerque, U., & Cavalcante de Araújo, E. (2012). Acute toxicity study of stone-breaker (Phyllanthus tenellus Roxb.). Revista de Ciências Farmacêuticas Básica e Aplicada, 33(2), 205–210.

Chaouqi, S., Moratalla-López, N., Alonso, G. L., Lorenzo, C., Zouahri, A., Asserar, N., Haidar, E. M., & Guedira, T. (2023). Effect of soil composition on secondary metabolites of Moroccan saffron (Crocus sativus L.). Plants, 12(711). https://doi.org/10.3390/plants12040711

Edozien, J. C., & Switzer, B. R. (1978). Influence of diet on growth in the rat. Journal of Nutrition, 108(2), 282–290. https://doi.org/10.1093/jn/108.2.282

Geethangili, M., & Ding, S.-T. (2018). A review of the phytochemistry and pharmacology of Phyllanthus urinaria L. Frontiers in Pharmacology, 9, 1109. https://doi.org/10.3389/fphar.2018.01109

Gerda, & Vigan. (2012). Progrès en dermato-Allergologie - Besançon Gerda. John Libbey Eurotext.

Han, J.-H., Kwak, J.-Y., Lee, S.-S., Kim, H.-G., Jeon, H., & Cha, R.-R. (2023). Markedly elevated aspartate aminotransferase from non-hepatic causes. Journal of Clinical Medicine, 12(310). https://doi.org/10.3390/jcm12010310

Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis (3rd ed.). Chapman & Hall.

Khare, S., Singh, A., Niharika, Amist, N., Azim, Z., & Singh, N. B. (2023). Secondary metabolites interference on potential of Solanum lycopersicum grown under UV-B stress and its impact on developmental attributes of Capsicum annuum. Plant Stress, 8, 100167. https://doi.org/10.1016/j.stress.2023.100167

Kikakedimau, N. R. (2018). Increasing secondary metabolites in Phyllanthus odontadenius M.A. Scholars’ Press.

Kikakedimau, N. R., Luyindula, N. S., Doumas, P., Mutambel’, H. S. N., Baissac, Y., Cimanga, K. R., Diamuini, N. A., Bulubulu, O. F., & Jay-Allemand, C. (2013). Phytochemical analysis of Phyllanthus niruri (Phyllanthaceae) extracts collected in four geographical areas in the Democratic Republic of the Congo. African Journal of Plant Science, 7(1), 9–20. https://doi.org/10.5897/AJPS12.087

Kikakedimau, N. R., Musuyu, M. D., Nsendo, M. K. O., Doumas, P., Kahambu, M. S., Taba, K. M., & Luyindula, N. S. (2019). Correlation between antioxidants and antiradical activities with in vitro of Phyllanthus odontadenius. Acta Scientific Medical Sciences, 3 (7), 144 – 154.

Lee, T. H., Kim, W. R., & Poterucha, J. J. (2012). Evaluation of elevated liver enzymes. Clinics in Liver Disease, 16(2), 183–198. https://doi.org/10.1016/j.cld.2012.03.006

Luyindula, N., Tona, L., Lukembila, S., Tsakala, M., Mesia, K., Musuamba, C. T., et al. (2004). In vitro antiplasmodial activity of callus extracts from fresh apical stems of Phyllantus niruri L (Euphorbiaceae), Part 1. Pharmaceutical Biology, 42(7), 1–7. https://doi.org/10.9734/JPRI/2018/37978

Mao, X., Wu, L.-F., Guo, H.-L., Chen, W.-J., Cui, Y.-P., Qi, Q. S., Li, Q. S., Liang, W.-Y., Yang, G.-H., Shao, Y.-Y., Zhu, D., She, G.-M., You, Y., & Zhang, L.-Z. (2016). The genus Phyllanthus: An ethnopharmacological, phytochemical, and pharmacological review. Evidence-Based Complementary and Alternative Medicine, 2016, 1–36. https://doi.org/10.1155/2016/7584952

Murray, R. K., Bender, D. A., Botham, K. M., Kennelly, P. J., Rodwell, V. W., & Weil, P. A. (2013). Harper’s Biochemistry (5th ed.; Translation of the 29th American Edition by Lionel Domenjoud). De Boeck Supérieur.

Nadra, G. (2023). Étude de la toxicité aiguë et sub-chronique des extraits de Ruta montana L. sur les rats albinos Wistar : Effet sur le foie, le rein, l’ovogenèse et l’embryogenèse (Doctoral thesis). http://dspace.univ-setif.dz:8888/jspui/handle/123456789/4096

Nakweti, K. R., Doumas, P., Mutambel’, H., Diamuini, N. A., Otono, F. B., Akolomia, J. K., Ndiku, S. L., & Kanyanga, R. C. (2012). Antiplasmodial activity and phytochemical analysis of Phyllanthus niruri L. (Phyllanthaceae) and Morinda lucida Benth (Rubiaceae) extracts. Journal of Agricultural Science and Technology A, 2, 373–383.

Nakweti, R. K., Mwangu-Kabi, O. N., Muganza, D. M., Cimanga, K. R., & Ndiku, S. L. (2023). Acute toxicity and in vivo antioxidant activity evaluation of aqueous extracts from Phyllanthus odontadenius Müll. Arg. Journal of Pharmaceutical Research International, 35(5), 20–33. https://doi.org/10.9734/JPRI/2023/v35i57326

Nakweti, R. K., Ndiku, S. L., Sinou, V., Luyeye, F. L., Mbemba, T. F., Mutambel’, D. H., Kanianga, R. C., & Ndofunsu, A. D. (2014). Effects of gamma irradiation on seeds germination, plantlets growth and in vitro antimalarial activities of Phyllanthus odontadenius Müll A. American Journal of Experimental Agriculture, 4(11), 1435–1457.

Rabeh, N. M., El-Masry, H. G., Ghallab, E. M., Elghandour, H. M., & Hassanien, A. M. (2019). Evaluation of efficacy diet supplemented with some local formulas on body weight and haematological parameters of rats. Egyptian Journal of Nutrition and Health, 14(1), 27–40.

Reshi, Z. A., Ahmad, W., Lukatkin, A. S., & Javed, S. B. (2023). From nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and in vitro approaches. Metabolites, 13(8), 895. https://doi.org/10.3390/metabo13080895

Rohrmoser, K. (1986). Manual on field trials under the Cooperation Technique. CTA & GTZ. (In French)

Rosenbaum, J. L., Frayo, R. S., Melhorn, S. J., Cummings, D. E., & Schur, E. A. (2019). Effects of multiple cycles of weight loss and regain on the body weight regulatory system in rats. American Journal of Physiology-Endocrinology and Metabolism, 317, E863–E870. https://doi.org/10.1152/ajpendo.00110.2019

Rosidah, I., Renggani, T. N., Firdausi, N., Ningsih, S., Yunianto, P., Permatasari, D., et al. (2024). Acute and subchronic toxicological study of the cocktail extract from Curcuma xanthorrhiza Roxb, Phyllanthus niruri L., and Morinda citrifolia L. Journal of Toxicology, 2024, 1–16. https://doi.org/10.1155/2024/9445226

Tholey, D. (2024). Lésions hépatiques provoquées par les médicaments. Le MANUEL MSD, version pour professionnel de santé. https://www.msdmanuals.com/fr/professional/troubles-hépatiques-et-biliaires (Consulted 3/10/2025)

Vande Berg, P., & Stärkel, P. (2019). Comment interpréter et bilanter une perturbation des transaminases ? ECU - Congrès de Médecine Générale, 1–9.

Watt, J. (1992). Les plantes médicinales et toxiques de l’Afrique australe et de l’Est (2nd ed.). Londres.

Yan, X., Li, Q., Jing, L., Wu, S., Duan, W., Chen, Y., Chen, D., & Pan, X. (2022). Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi Fructus. Frontiers in Pharmacology, 13, Article 1017268. https://doi.org/10.3389/fphar.2022.1017268

Yeap, S. K., Yong, C. Y., Faruq, U., Ong, H. K., Mohamed Amin, Z. B., Ho, W. Y., Sharifudin, S., & Jaganath, I. B. (2021). In vivo toxicity and antioxidant of pressurised hot water Phyllanthus tenellus Roxb. extracts. BMC Complementary Medicine and Therapies, 21(86), 1–8. https://doi.org/10.1186/s12906-021-03260-y

Creative Commons License

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.