Orapuh Journal | Journal of Oral & Public Health
Efficacy of silver nanoparticles from Jatropha curcas leaf extracts against pyrethroid-resistant Anopheles gambiae
PDF (English)

Comment citer

Basosila, N. B., Mukomena, E., Mbembo-Wa-Mbembo, B., Masengo, C. A., & Koto-Te-Nyiwa Ngbolua, J.-P. (2024). Efficacy of silver nanoparticles from Jatropha curcas leaf extracts against pyrethroid-resistant Anopheles gambiae. Orapuh Journal, 5(5), e1147. https://doi.org/10.4314/orapj.v5i5.47

Résumé

Introduction

The increasing resistance of Anopheles gambiae to conventional insecticides poses a significant challenge to malaria control efforts. This study investigates the synthesis of silver nanoparticles (NPAgs) from Jatropha curcas leaf extracts and their potential larvicidal effects on wild Anopheles gambiae larvae, offering a novel approach to vector management.

Purpose

The purpose of this study was to synthesize NPAgs from J. curcas and assess their larvicidal efficacy against Anopheles gambiae larvae. This research aims to contribute to the development of alternative strategies for mosquito control, addressing the growing issue of insecticide resistance.

Methods

Silver nanoparticles were synthesized using leaf extracts from J. curcas and characterized by UV-Vis spectroscopy, X-ray diffraction, and X-ray fluorescence spectrometry. Phytochemical screening identified secondary metabolites present in the extracts. The larvicidal effects of NPAgs were evaluated through larvicidal bioassays, and their hemolytic potential was assessed on erythrocyte membranes. Insecticide susceptibility testing was performed using the WHO tube sensitivity test to measure resistance levels.

Results

Phytochemical analysis indicated the presence of various secondary metabolites, including polyphenols, flavonoids, tannins, alkaloids, quinones, and steroids. Thin-layer chromatography confirmed the presence of flavonoids, terpenoids, alkaloids, and iridoids. UV-Vis spectroscopy revealed an absorbance peak at 500 nm, confirming NPAg synthesis. The characteristic diffractograms showed five peaks corresponding to distinct crystal planes. The hemolysis rate of NPAgs (1 mg/mL) was less than 50%, indicating low cytotoxicity. Larvicidal activity was significant, with 100% mortality observed at a concentration of 1 mg/mL after 24 hours. Resistance testing revealed confirmed resistance at both study sites, with Maluku showing higher resistance than Mbudi. Pre-exposure to 4% PBO increased mortality compared to permethrin alone. Molecular analysis of An. gambiae revealed a composition of 80% An. gambiae, 5% An. coluzzii, and 15% non-amplified samples. Genotypic analysis indicated that 75% of the mosquitoes were homozygous for Vgsc-L1014F, with the remainder showing varying resistance profiles.

Conclusion

The findings highlight the potential of NPAgs synthesized from J. curcas as effective larvicides against An. gambiae, with implications for future mosquito control strategies. The low cytotoxicity of NPAgs and their efficacy against resistant mosquito populations suggest they could serve as a promising alternative in integrated pest management approaches for malaria vector control.

https://doi.org/10.4314/orapj.v5i5.47
PDF (English)

Références

Adedamola, B. S., & Nzube, F. E. (2023). Larvicidal potential of silver nanoparticles synthesized from Ocimum gratissimum leaf extracts against anopheles’ mosquito. GSC Biological and Pharmaceutical Sciences, 25(3), 041–048. https://doi.org/10.30574/gscbps.2023.25.3.0517

Asuk, A. A., Agiang, M. A., Dasofunjo, K., & Willie, A. J. (2015). The biomedical significance of the phytochemical, proximate and mineral compositions of the leaf, stem bark and root of Jatropha curcas. Asian Pacific Journal of Tropical Biomedicine, 5(8), 650–657. https://doi.org/10.1016/j.apjtb.2015.05.015

Baghela, V., & Kachhwaha, N. (2021). Efficacy of Nanoparticles as a research tool to control Mosquito vector: A review. Flora and Fauna, 27(2), 271–278. https://doi.org/10.33451/florafauna.v27i2pp271-278

Bandibabone, J., McLoughlin, C., N’Do, S., Bantuzeko, C., Byabushi, V., Jeanberckmans, M., Guardiola, M., Zawadi, B., Diabaté, A., Prudhomme, J., Walker, T., & Messenger, L. A. (2021). Investigating molecular mechanisms of insecticide resistance in the Eastern Democratic Republic of the Congo. Malaria Journal, 20(464). https://doi.org/10.1186/s12936-021-04002-8

Basosila, N., Inkoto, C., Maganga, O., Mbembo, B., Kasiama, G., Kabengele, C., Falanga, C., Masengo, C., Mpiana, P., & Ngbolua, K.-T.-N. (2023). Biogenic Synthesis, Spectroscopic Characterization and Bioactivity of Cymbopogon citratus Derived Silver Nanoparticles. Journal of Applied Sciences and Nanotechnology, 3(4), 33–41. https://doi.org/10.53293/jasn.2023.7012.1226

Bello, N., Lawali, S., Alhassan, M., Suleiman, M., Sahabi, Y. M., & Nasiru, Y. (2019). Proximate and Mineral Composition of Jatropha curcas Leaves. ChemSearch Journal, 10(1), 99–102.

Bharathi, V., Sivakumar, M., Udayabhaskar, R., Takebe, H., & Karthikeyan, B. (2014). Optical, structural, enhanced local vibrational and fluorescence properties in K-doped ZnO nanostructures. Applied Physics A: Materials Science and Processing, 116(1), 395–401. https://doi.org/10.1007/s00339-013-8139-8

Bobanga, T., Ayieko, W., Zanga, M., Umesumbu, S., Landela, A., Fataki, O., Mandoko, A. S., Tshibamba, J., & Nyabola, L. (2013). Field efficacy and acceptability of PermaNet® 3.0 and OlysetNet® in Kinshasa, Democratic Republic of the Congo. J Vector Borne Dis, 50(3), 206–214.

Buduwara, J. H., Naphtali, R. S., Adiel, T., Sami, R., Tafem, M. L., & Tadouno, M. F. (2023). Qualitative Phytochemical Screening and Larvicidal Efficacy of Physic Nut (Jatropha curcas) Leaves, Stem-bark and Root Extracts on Mosquito Larvae. Journal of Applied Life Sciences International, 26(6), 98–105. https://doi.org/10.9734/jalsi/2023/v26i6631

Byrne, N. (2007). Urban malaria risk in sub-Saharan Africa: Where is the evidence? Travel Medicine and Infectious Disease, 5(2), 135–137. https://doi.org/10.1016/j.tmaid.2006.04.003

Chen, L. Q., Fang, L., Ling, J., Ding, C. Z., Kang, B., & Huang, C. Z. (2015). Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chemical Research in Toxicology, 28(3), 501–509. https://doi.org/10.1021/tx500479m

De Silva, P. M., & Marshall, J. M. (2012). Factors contributing to urban malaria transmission in subsaharan Africa: A systematic review. Journal of Tropical Medicine, 2012. https://doi.org/10.1155/2012/819563

Escobar, D., Ascencio, K., Palma, A., & Ana, S. (2020). Blood Meal Sources of Anopheles spp . in Malaria. Insects, 11(7), 450.

Fatnassi, B., Khouja, M. L., & El, F. O. H. (2014). Larvicidal efficacy of Jatropha curcas L. (Euphorbiaceae) leaf and seed aqueous extracts against Culex pipiens L. African Journal of Biotechnology, 13(26), 2641–2647. https://doi.org/10.5897/ajb2014.13622

Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant diversity. Global Ecology and Biogeography, 29(10), 1634–1650. https://doi.org/10.1111/geb.13151

Jensen, D. J., & Poulsen, H. F. (2012). The three dimensional X-ray diffraction technique. Materials Characterization, 72, 1–7. https://doi.org/10.1016/j.matchar.2012.07.012

Jeyaprakasam, N. K., Low, V. L., Liew, J. W. K., Pramasivan, S., Wan-Sulaiman, W. Y., Saeung, A., & Vythilingam, I. (2022). Blood meal analysis of Anopheles vectors of simian malaria based on laboratory and field studies. Scientific Reports, 12(354). https://doi.org/10.1038/s41598-021-04106-w

Kanzaa, J. P. B., El Fahime, E., Alaoui, S., Essassi, E. M., Brooke, B., Malafu, A. N., & Tezzo, F. W. (2013). Pyrethroid, DDT and malathion resistance in the malaria vector anopheles gambiae from the democratic Republic of Congo. Transactions of the Royal Society of Tropical Medicine and Hygiene, 107(1), 8–14. https://doi.org/10.1093/trstmh/trs002

Karch, S., Asidi, N., Mnzambi, Z. M., Salaun, J. J., & Brumpt. (1992). La faune anophélienne et la transmission du paludisme humain à Kinshasa (Zaïre). Bulletin de La Société de Pathologie Exotique, 85(4), 304–309.

Karimi, A., Krähmer, A., Herwig, N., Schulz, H., Hadian, J., & Meiners, T. (2020). Variation of Secondary Metabolite Profile of Zataria multiflora Boiss. Populations Linked to Geographic, Climatic, and Edaphic Factors. Frontiers in Plant Science, 11, 969. https://doi.org/10.3389/fpls.2020.00969

Kasiama, N. G., N. Kabengele, C., T. Kilembe, J., M. Kitadi, J., Mifundu, M., Ngbolua, J. P., S.T. Tshibangu, D., D. Tshilanda, D., & T. Tshimankinda, P. (2023). Green Synthesis, Characterization and Evaluation of Biological Activities of Ag-Mno Nanocomposites from Cyttaranthus Congolensis. Diyala Journal of Engineering Sciences, 8716(3), 24–36. https://doi.org/10.24237/djes.2023.16303

Kumar, D., Kumar, P., Singh, H., & Agrawal, V. (2020). Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: prospects and challenges. Environmental Science and Pollution Research, 27(21), 25987–26024. https://doi.org/10.1007/s11356-020-08444-6

Levitz, L., Janko, M., Mwandagalirwa, K., Thwai, K. L., Likwela, J. L., Tshefu, A. K., Emch, M., & Meshnick, S. R. (2018). Effect of individual and community-level bed net usage on malaria prevalence among underfives in the Democratic Republic of Congo. Malaria Journal, 17(39), https://doi.org/10.1186/s12936-018-2183-y Malaria. https://doi.org/10.1186/s12936-018-2183-y

Loonen, J. A. C. M., Dery, D. B., Musaka, B. Z., Bandibabone, J. B., Bousema, T., Lenthe, M. Van, Stefanija, B. P., Fesselet, J. F., & Koenraadt, C. J. M. (2020). Identification of main malaria vectors and their insecticide resistance profile in internally displaced and indigenous communities in Eastern Democratic Republic of the Congo (DRC). Malaria Journal, 19(425). https://doi.org/10.1186/s12936-020-03497-x

Lynd, A., Oruni, A., Van’T Hof, A. E., Morgan, J. C., Naego, L. B., Pipini, D., O’Kines, K. A., Bobanga, T. L., Donnelly, M. J., & Weetman, D. (2018). Insecticide resistance in Anopheles gambiae from the northern Democratic Republic of Congo, with extreme knockdown resistance (kdr) mutation frequencies revealed by a new diagnostic assay. Malaria Journal, 17(412). https://doi.org/10.1186/s12936-018-2561-5

Mahajan, S. M., Suryawanshi, R. M., Patel, M. S., Bhandari, H. S., Manure, S. S., & Shewale, V. D. (2023). HEPATOPROTECTIVE ACTIVITY OF LEAVES OF JATROPHA CURCAS LINN. Eur. Chem. Bull. 2023, 12(5), 4274–4279. https://doi.org/10.48047/ecb/2023.12.si5a.0331

Mansiangi, P., Umesumbu, S., Etewa, I., Zandibeni, J., Bafwa, N., Blaufuss, S., Olapeju, B., Ntoya, F., Sadou, A., Irish, S., Mukomena, E., Kalindula, L., Watsenga, F., Akogbeto, M., Babalola, S., Koenker, H., & Kilian, A. (2020). Comparing the durability of the long-lasting insecticidal nets DawaPlus® 2.0 and DuraNet© in northwest Democratic Republic of Congo. Malaria Journal, 19, 189. https://doi.org/10.1186/s12936-020-03262-0

Matubi, E. M., Kaounga, G. I., Zanga, J., Mbuku, G. B., Maniania, J. N. K., Mulenda, B., Sodi, J. N. M., Tamfum, J. J. M., & Masiangi, P. (2020). Insecticide susceptibility of anopheles gambiae S.L and identification of some resistance mechanisms in Kwilu province in the Democratic Republic of Congo. Pan African Medical Journal, 37(79). https://doi.org/10.11604/pamj.2020.37.79.18635

Mbama Ntabi, J. D., Malda Bali, E. D., Lissom, A., Akoton, R., Djontu, J. C., Missontsa, G., Mouzinga, F. H., Baina, M. T., Djogbenou, L., Ndo, C., Wondji, C., Adegnika, A. A., Lenga, A., Borrmann, S., & Ntoumi, F. (2024). Contribution of Anopheles gambiae sensu lato mosquitoes to malaria transmission during the dry season in Djoumouna and Ntoula villages in the Republic of the Congo. Parasites and Vectors, 17. https://doi.org/10.1186/s13071-023-06102-7

Metelo-Matubi, E., Zanga, J., Binene, G., Mvuama, N., Ngamukie, S., Nkey, J., Schopp, P., Bamba, M., Irish, S., Nguya-Kalemba-maniania, J., Fasine, S., Nagahuedi, J., Muyembe, J. J., & Mansiangi, P. (2021). The effect of a mass distribution of insecticide-treated nets on insecticide resistance and entomological inoculation rates of Anopheles gambiae s.l. in Bandundu City, Democratic Republic of Congo. Pan African Medical Journal, 40(118). https://doi.org/10.11604/pamj.2021.40.118.27365

Metelo, E., Zanga, J., Batumbo, D., Mandja, B., Lukoki, H., Bokulu, A., Iluku, T., Basosila, N., Manzambi, E., Agossa, F., & Mukomena, E. (2024). Complexity of Vector Control and Entomological Surveillance in Endemic Sentinel Sites of the National Malaria Control Program (NMCP) in the Democratic Republic of Congo (DRC). In IntechOpen (p. doi: 10.5772/intechopen.114044). https://doi.org/http://dx.doi.org/10.5772/57353

Mpiana, P. T., Mudogo, V., Tshibangu, D. S. T., Ngbolua, K. N., Tshilanda, D. D., & Atibu, E. K. (2009). Antisickling Activity of Anthocyanins of Jatropha curcas L. Chemistry and Medicinal Value, 25, 101–108.

Muthukumaran, U., Govindarajan, M., & Rajeswary, M. (2015). Green synthesis of silver nanoparticles from Cassia roxburghii—a most potent power for mosquito control. Parasitology Research, 114(12), 4385–4395. https://doi.org/10.1007/s00436-015-4677-7

N’do, S., Bandibabone, J. B., Soma, D. D., Musaka, B. Z., Prudhomme, J., Habamungu, C. C., Namountougou, M., Sangaré, I., Kientega, M., Kaboré, D. A. P., Bayili, K., Yerbanga, R. S., Diabate, A., Dabire, R. K., Ouedraogo, J. B., Belem, A. M. G., Boëte, C., Guardiola-Claramonte, M., & Chimanuka, B. (2021). Insecticide resistance profiles in malaria vector populations from Sud-Kivu in the Democratic Republic of the Congo. Transactions of the Royal Society of Tropical Medicine and Hygiene, 115(11), 1339–1344. https://doi.org/10.1093/trstmh/trab116

Nardini, L., Hunt, R. H., Dahan-Moss, Y. L., Christie, N., Christian, R. N., Coetzee, M., & Koekemoer, L. L. (2017). Malaria vectors in the Democratic Republic of the Congo: The mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus. Malaria Journal, 16(448). https://doi.org/10.1186/s12936-017-2099-y

Ngbolua, K.-T.-N., Mbingu, M. L., Ashande, C. M., Liyongo, C. I., Mawunu, M., Mawi, C. F., Kankolongo, J. N., Eyale, L. E., Dinangayi, D., Tshilanda, Tshibangu, D. S.-T., & Mpiana, P. T. (2023). Contribution To the Ethno-Botanical Study and the Bioenergetic, Cosmetic, and Pharmaco-Biological Valorization of J. Curcas L. (Euphorbiaceae) in the Democratic Republic of the Congo. Science Journal of University of Zakho, 11(4), 532–543. https://doi.org/10.25271/sjuoz.2023.11.4.1171

Ngbolua, K.-T.-N., Rafatro, H., Rakotoarimanana, H., Ratsimamanga, U., Mudogo, V., Mpiana, P., & Tshibangu, D. (2011). Pharmacological screening of some traditionally used antimalarial plants from the Democratic Republic of Congo compared to their ecological taxonomic equivalence in Madagascar. International Journal of Biological and Chemical Sciences, 5(5), 1797–1804. https://doi.org/10.4314/ijbcs.v5i5.3

Ngbolua, K. (2019). Selenium Content, Anthelmintic, Antioxidant and Antibacterial Activities of Artocarpus Heterophyllus Lam. From Ubangi Ecoregion in Democratic Republic of the Congo. American Journal of Biomedical Science & Research, 6(2), 135–141. https://doi.org/10.34297/ajbsr.2019.06.001013

Ngbolua, N., Y. Behundo, M., M. Mbembo, B., L. Inkoto, C., A. Masengo, C., T. Kilembe, J., Jacques D. Amogu, J., M. Falanga, C., A. Asimonyio, J., K. Mutwale, P., K. Ngombe, N., & T. Mpiana, P. (2021). Micrographic Profiling and Phytochemical Analysis of Some Plants Consumed by Okapia johnstoni (Giraffidae: Mammalia) in Democratic Republic of the Congo. Trends Journal of Sciences Research, 1(1), 38–50. https://doi.org/10.31586/jbls.2021.131

Nyalundja, A. D., Bugeme, P. M., Guillaume, A. S., Ntaboba, A. B., Hatu’m, V. U., Tamuzi, J. L., Ndwandwe, D., Iwu-Jaja, C., Wiysonge, C. S., & Katoto, P. D. M. C. (2024). Socio-Demographic Factors Influencing Malaria Vaccine Acceptance for Under-Five Children in a Malaria-Endemic Region: A Community-Based Study in the Democratic Republic of Congo. Vaccines, 12(4), https://doi.org/10.3390/vaccines12040380. https://doi.org/10.3390/vaccines12040380

Olayemi, K., Busari, J., Adeniyi, K. A., & Ukubuiwe, A. C. (2014). Comparative Larvicidal Efficacy of Leaf and Stem Extract of Jatropha Curcas against Culex Pipiens Pipiens. Malaya Journal of Biosciences, 1(2), 104–108.

Onen, H., Luzala, M. M., Kigozi, S., Sikumbili, R. M., Muanga, C. J. K., Zola, E. N., Wendji, S. N., Buya, A. B., Balciunaitiene, A., Viškelis, J., Kaddumukasa, M. A., & Memvanga, P. B. (2023). Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. Insects, 14(3). https://doi.org/10.3390/insects14030221

Onyamboko, M., Wasakul, V., Bakomba, S. B., Kayembe, D. K., Nzambiwishe, K., Ekombolo, P. E., Badjanga, B. B., Moke, J., Ngavuka, J. N., Lwadi, B. N., Drury, E., Ariani, C., Goncalves, S., Chamsukhee, V., Waithira, N., Verschuuren, T. D., Lee, S. J., Fanello, C., Kingdom, U., … Kingdom, U. (2024). Pregnant women as a sentinel population for genomic surveillance of malaria in the Democratic Republic of Congo. MedRxiv, https://doi.org/10.1101/2024.05.27.24307472.

Oxborough, R. M., Seyoum, A., Yihdego, Y., Dabire, R., Gnanguenon, V., Wat’Senga, F., Agossa, F. R., Yohannes, G., Coleman, S., Samdi, L. M., Diop, A., Faye, O., Magesa, S., Manjurano, A., Okia, M., Alyko, E., Masendu, H., Baber, I., Sovi, A., … Dengela, D. (2019). Susceptibility testing of Anopheles malaria vectors with the neonicotinoid insecticide clothianidin; Results from 16 African countries, in preparation for indoor residual spraying with new insecticide formulations. Malaria Journal, 18(264), https://doi.org/10.1186/s12936-019-2888-6. https://doi.org/10.1186/s12936-019-2888-6

Pilaquinga, F., Morejón, B., Ganchala, D., Morey, J., Piña, N., Debut, A., & Neira, M. (2019). Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae). PLoS ONE, 14(10), e0224109. https://doi.org/10.1371/journal.pone.0224109

Poopathi, S., De Britto, L. J., Praba, V. L., Mani, C., & Praveen, M. (2015). Synthesis of silver nanoparticles from Azadirachta indica—a most effective method for mosquito control. Environmental Science and Pollution Research, 22(4), 2956–2963. https://doi.org/10.1007/s11356-014-3560-x

Portilla-Arias, J., Patil, R., Hu, J., Ding, H., Black, K. L., García-Alvarez, M., Muoz-Guerra, S., Ljubimova, J. Y., & Holler, E. (2010). Nanoconjugate platforms development based in poly(,L-Malic Acid) methyl esters for tumor drug delivery. In Journal of Nanomaterials. https://doi.org/10.1155/2010/825363

Prakash., N., Sujitha., S., Dass., K., & Mariappan., P. (2022). Synthesis of Silver Nanoparticles by Using Plants Extract and its Efficiency Against Aedes aegypti (Linn.). International Journal of Zoological Investigations, 08(01), 338–346. https://doi.org/10.33745/ijzi.2022.v08i01.036

Rahu, M. I., Naqvi, S. H. A., Memon, N. H., Idrees, M., Kandhro, F., Pathan, N. L., Sarker, M. N. I., & Aqeel Bhutto, M. (2021). Determination of antimicrobial and phytochemical compounds of Jatropha curcas plant. Saudi Journal of Biological Sciences, 28(5), 2867–2876. https://doi.org/10.1016/j.sjbs.2021.02.019

Riveron, J. M., Watsenga, F., Irving, H., Irish, S. R., & Wondji, C. S. (2018). High Plasmodium Infection Rate and Reduced Bed Net Efficacy in Multiple Insecticide-Resistant Malaria Vectors in Kinshasa, Democratic Republic of Congo. Journal of Infectious Diseases, 217, 320–328. https://doi.org/10.1093/infdis/jix570

Sanjaya, S., Effendi, I., & Nursyirwani, N. (2022). Using Rhizhopora apiculata Extract for Mosquito Larvae Control. Tropical Marine Environmental Sciences, 1(1), 25–31. https://doi.org/10.31258/tromes.1.1.25-31

Sharma, A. K., Gangwar, M., Tilak, R., Nath, G., Sinha, A. S. K., Tripathi, Y. B., & Kumar, D. (2012). Comparative in vitro antimicrobial and phytochemical evaluation of methanolic extract of root, stem and leaf of Jatropha curcas linn. Pharmacognosy Journal, 4(30), 34–40. https://doi.org/10.5530/pj.2012.30.7

Sinka, M. E., Pironon, S., Massey, N. C., Longbottom, J., Hemingway, J., Moyes, C. L., & Willis, K. J. (2020). A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proceedings of the National Academy of Sciences of the United States of America, 117(40). https://doi.org/10.1073/pnas.2003976117

Sivapunniyam, A., Perumal, T., Vasu, N., Kavidasan, T., Seetharaman, P., Raja, K., & Stalin, M. (2024). Zinc Oxide Nanoparticles Fabricated With Phytoextracts For The Control Of Mosquito Vectors- A Systemic Review. Journal of Advanced Zoology, 45(2), 1663–1681. https://www.cabdirect.org/cabdirect/abstract/20013127238

Soni, N., & Prakash, S. (2014). Green Nanoparticles for Mosquito Control. Scientific World Journal, http://dx.doi.org/10.1155/2014/496362 Research. https://doi.org/10.1155/2014/496362

Srikar, S. , Giri, D. , Pal, D. , Mishra, P. and Upadhyay, S. (2016). Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 6, 34-56. doi: 10.4236/gsc.2016.61004.

Wat’senga, F., Agossa, F., Manzambi, E. Z., Illombe, G., Mapangulu, T., Muyembe, T., Clark, T., Niang, M., Ntoya, F., Sadou, A., Plucinski, M., Li, Y., Messenger, L. A., Fornadel, C., Oxborough, R. M., & Irish, S. R. (2020). Intensity of pyrethroid resistance in Anopheles gambiae before and after a mass distribution of insecticide-treated nets in Kinshasa and in 11 provinces of the Democratic Republic of Congo. Malaria Journal, 19(1), 1–13. https://doi.org/10.1186/s12936-020-03240-6

Wat’Senga, F., Manzambi, E. Z., Lunkula, A., Mulumbu, R., Mampangulu, T., Lobo, N., Hendershot, A., Fornadel, C., Jacob, D., Niang, M., Ntoya, F., Muyembe, T., Likwela, J., Irish, S. R., & Oxborough, R. M. (2018). Nationwide insecticide resistance status and biting behavior of malaria vector species in the Democratic Republic of Congo. Malaria Journal, 17(129). https://doi.org/10.1186/s12936-018-2285-6

WHO. (2005). Guidelines for laboratory and field testing of mosquito larvicides. In World Health Organization. http://whqlibdoc.who.int/hq/2005/WHO_CDS_WHOPES_GCDPP_2005.13.pdf?ua=1

WHO. (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes Second edition.

Yadouleton, A. W., Padonou, G., Asidi, A., Moiroux, N., Bio-Banganna, S., Corbel, V., N’Guessan, R., Gbenou, D., Yacoubou, I., Gazard, K., & Akogbeto, M. C. (2010). Insecticide resistance status in Anopheles gambiae in southern Benin. Malaria Journal, 9(83), 1–6. https://doi.org/10.1186/1475-2875-9-83

Yang, G. G., Kim, D., Pham, A., & Paul, C. J. (2018). A meta-regression analysis of the effectiveness of mosquito nets for malaria control: The value of long-lasting insecticide nets. International Journal of Environmental Research and Public Health, 15(3), 546. https://doi.org/10.3390/ijerph15030546

Zanga, J., Metelo, E., Mbanzulu, K., Irish, S., Mulenda, B., Wumba, R. D., & Masiangi, P. (2022). Susceptibility status of Anopheles gambiae s.l. to insecticides used for malaria control in Kinshasa, Democratic Republic of the Congo. Annales Africaines de Médecine, 15(2), e4533–e4542. https://doi.org/https://dx.doi.org/10.4314/aam.v15i2.2

Creative Commons License

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.