Orapuh Journal | Journal of Oral & Public Health
Literature Review on the Ethnobotany, Phytochemistry, Pharmacological, Molecular Docking Study of Vitex madiensis Oliv. (Lamiaceae) and New Research Perspectives
PDF

Keywords

Vitex madiensis Oliv
Ethnobotany
Phytochemistry
Pharmacology
Antimicrobial activity

How to Cite

Moke Lengbiye, E., Koto-Te-Nyiwa Ngbolua, J.-P., Bekomo, J. I., Tshibangu, D. S.-T., Mbing, J. N., Pegnyemb, D. E., & Mpiana, P. T. (2025). Literature Review on the Ethnobotany, Phytochemistry, Pharmacological, Molecular Docking Study of Vitex madiensis Oliv. (Lamiaceae) and New Research Perspectives . Orapuh Journal, 6(2), e1217. https://doi.org/10.4314/orapj.v6i2.17

Abstract

Introduction

Vitex madiensis (Lamiaceae) is a medicinal plant widely utilized in traditional African medicine for its antimicrobial, anti-inflammatory, and hepatoprotective properties. Its rich phytochemical diversity, including flavonoids, terpenoids, and iridoids, has garnered attention for its potential in combating antimicrobial resistance, particularly against β-lactamase-producing bacteria, which are major contributors to global antibiotic resistance.

Purpose

This study aims to review the ethnobotanical, phytochemical, and pharmacological properties of Vitex madiensis, evaluate the molecular docking potential of its bioactive compounds against β-lactamase (PDB ID: 1fco), and assess their pharmacokinetic and toxicological profiles to explore their viability as antimicrobial agents.

Methods

A total of 60 chemical compounds from Vitex madiensis and related Vitex species were analyzed. Molecular docking was performed using AutoDock Vina to evaluate interactions with β-lactamase, with gentamicin serving as the reference molecule. Pharmacokinetic and toxicological analyses were conducted on 54 compounds to predict drug-likeness, toxicity, and interaction profiles.

Results

Molecular docking revealed nine compounds with significant interactions. Among them, 3-epi-maslinic acid demonstrated the highest binding affinity (-8.8 kcal/mol), outperforming gentamicin (-8.3 kcal/mol). Other compounds, including kaempferol, luteolin, and vitetrifolin C, exhibited promising affinities (-7.9 to -8.2 kcal/mol). Pharmacokinetic analysis indicated that most compounds were non-toxic, with 8-epi-sclareol, citronellyl acetate, rotundifaran, vitexifolin E, and vitexifolin C exhibiting optimal drug-like properties. However, caution is warranted due to potential drug interactions observed in certain compounds.

Conclusion

This review highlights the therapeutic potential of Vitex madiensis as a cost-effective and accessible source for antimicrobial drug development, particularly against β-lactamase-producing bacteria. The integration of molecular docking with pharmacokinetic predictions provides novel insights into the synergistic potential of its bioactive compounds. Future research should further explore these findings through in vitro and in vivo studies.

https://doi.org/10.4314/orapj.v6i2.17
PDF

References

Aliyu, A., Mabekoje, O.O., & Ibrahim, K. (2022). The impact of negligence of onychomycosis in tropical countries. EC Microbiology, 18(4), 9–18.

Argueta, A., Cano, L.M., & Rodarte, M.E. (1994). Atlas de las Plantas de la Medicina Tradicional I y III. Instituto Nacional Indigenista. ISBN: Vol. I: 968-29-6601-9; Vol. II: 968-29-7324-4; Vol. III: 968-29-7325-2.

Bishnu, J., Sujogya, K.P., Ramin, S.J., Maoxuan, L., Niranja, P., Pieta, L., Johan, N., & Walter, L. (2020). Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence. Evidence-based Complementary and Alternative Medicine, 1043471, 1–14.

Catarino, L., Havik, P.J., & Romeiras, M.M. (2016). Medicinal plants of Guinea-Bissau: Therapeutic applications, ethnic diversity and knowledge transfer. Journal of Ethnopharmacology, 183, 71–94. https://doi.org/10.1016/j.jep.2016.02.032

Chantaranothai, P. (2011). A revision of the genus Vitex (Lamiaceae) in Thailand. Tropical Natural History, 11, 91–118.

Dabur, R., Amita, G., Mandal, T.K., Desh, D.S., Vivek, B., Gurav, A.G., & Lavekar, G.S. (2007). Antimicrobial activity of some Indian medicinal plants. African Journal of Traditional, Complementary and Alternative Medicines, 4(3), 313–318.

Danton, O. (2017). Extraction des substances naturelles antalgiques à partir des plantes utilisées dans la pharmacopée traditionnelle au Mali [Doctoral dissertation, Université Clermont Auvergne]. DU2788, 257p.

de Kok, R. (2008). The genus Vitex (Labiatae) in the flora Malesiana region, excluding New Guinea. Kew Bulletin, 63, 17–40.

Delaude, C. (1978). Les végétaux du Zaïre : Matériel médico-magique des guérisseurs et sources de recherches phytochimiques. Université de Liège. Editions du Centre de Coopération au Développement (CECODE). Imprimerie George Michel S.A., rue de la paix n°6, 4000 Liège, 164p.

Diafouka, A. J. P. (1997). Analyse des usages des plantes médicinales dans 4 régions de Congo-Brazzaville [Doctoral dissertation, Université libre de Bruxelles]. Faculté des Sciences, Laboratoire de Botanique Systématique et de Phytosociologie, 431p. https://doi.org/10.4314/ajtcam.v4i3.31225

Egbekun, M.K., Akowe, J.I., & Ede, R.J. (1996). Physico-chemical and sensory properties of formulated syrup from black plum (Vitex doniana) fruit. Plant Foods for Human Nutrition, 49, 301–306.

Guha, G., Rajkumar, V., & Ashok, K.R. (2010). Polyphenolic constituents of methanolic and aqueous extracts of Vitex negundo render protection to Hep3B cells against oxidative cytotoxicity. Food and Chemical Toxicology, 48, 2133–2138. https://doi.org/10.1016/j.fct.2010.05.017

Hajji, H., Tallal, I., Maafa, I., Bentata, F., El Alaoui Faris, F.E., Abdennebi, E.L., & El Aissami, A. (2016). Evaluation in vitro de l’activité antifongique de quatre plantes médicinales marocaines sur cinq champignons phytopathogènes. Revue Marocaine de Protection des Plantes, 10, 57–65.

Kaliora, A.C., & Dedoussis, G.V.Z. (2007). Natural antioxidant compounds in risk factors for cardiovascular disease. Pharmacological Research, 56, 99–109. https://doi.org/10.1016/j.phrs.2007.04.018

Kévin, B., Julien, V., Ali, L., Simon, A., Marie-Hélène, R., & Estelle, C. (2019). Antifungal activity of [K3] temporin-SHa against medically relevant yeasts and moulds. Canadian Journal of Microbiology. https://cdnsciencepub.com by 169.159.210.163 on 03/15/24.

Kibungu, K.A.O. (2003). Quelques plantes médicinales du Bas-Congo et leurs usages (198p).

Kimpouni, V., Lenga-Sacadura, M.Y., Mamboueni, J.C., & Mikoko, E.N. (2018). Phytodiversité et pharmacopée traditionnelle de la communauté Kaamba de Madingou (Bouenza-Congo). European Scientific Journal, 14(3), 191–220. https://doi.org/10.19044/esj.2018.v14n3p191

Latham, P. (2004). Useful plants of Bas-Congo province, Democratic Republic of the Congo (320p). DFIG, London, United Kingdom.

Lautenschläger, T., Monizi, M., Pedro, M., Mandombe, J.L., Bránquima, M.F., Heinze, C., & Neinhuis, C. (2018). First large-scale ethnobotanical survey in the province of Uíge, northern Angola. Journal of Ethnobiology and Ethnomedicine, 14, 51. https://doi.org/10.1186/s13002-018-0238-3

Lengbiye, E. M., Ngbolua, K. N., Ngiala, G. B., Mess, L. M., Olivier, P. N., Ngo, J. M., Dieudonné, E. P., & Mpiana, P. T. (2018). Vitex madiensis Oliv. (Lamiaceae): Phytochemistry, pharmacology and future directions, a mini-review. Journal of Pharmacognosy and Phytochemistry, 7(2), 244-251.

Lengbiye, E. M., Ngbolua, K., Messi, L. M., Rasoazanany, E. O., Luyeye, F. L., Mbing, J. N., Kapepula, P. M., Ngombe, N. K., Pegnyemb, D. E., & Mpiana, P. T. (2020). Microscopic studies, mineral composition and bioactivity of Vitex madiensis Oliv. (Lamiaceae). Discovery Phytomedicine, 7(4), 177-185. https://doi.org/10.15562/phytomedicine.2020.149

Lucks, B. C. (2003). Vitex agnus castus essential oil and menopausal balance: A research update. Complementary Therapies in Nursing & Midwifery, 9, 157-160. https://doi.org/10.1016/S1353-6117(03)00020-9

Makumbelo, E., Lukoki, L., Paulus, J. J. S. J., & Luyindula, N. (2008). Stratégie de valorisation des espèces ressources des produits non ligneux de la savane des environs de Kinshasa: II. Enquête ethnobotanique (aspects médicinaux). Tropicultura, 26(3), 129-134.

Malgras, D. (R. P.) (1992). Arbres et arbustes guérisseurs des savanes maliennes. Editions Karthala.

Menga, M. P., Geerengbo, G. K., Mawunu, M., Masengo, A. C., Mpiana, T. P., Virima, M., Ngbolua, K. N. (2024). Integrating ethnobotany and artificial intelligence to validate the potential bioactivity of two medicinal plants traditionally used in the treatment of influenza in IBI-Village and surrounding areas, Democratic Republic of the Congo. Natural Resources for Human Health, 4(3), 230-246. https://doi.org/10.53365/nrfhh/187385

Montiel-Herrera, M., Camacho-Hernández, I. L., Ríos-Morgan, A., & Delgado-Vargas, F. (2004). Partial physicochemical and nutritional characterization of the fruit of Vitex mollis (Verbenaceae). Journal of Food Composition and Analysis, 17, 205-215. https://doi.org/10.1016/j.jfca.2003.09.001

Mpiana, P. T., Ngbolua, K. N., Tshibangu, D. S. T., Kilembe, J. T., Gbolo, B. Z., Mwanangombo, D. T., Inkoto, C. L., Lengbiye, E. M., Mbadiko, C. M., Matondo, A., Ngala, G. B., & Tshilanda, D. D. (2020). Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chemical Physics Letters, 754, 1-7. https://doi.org/10.1016/j.cplett.2020.137751

N’tcha, C., Haziz, S., Adéchola, P. P. K., Joachim, D. G., & Lamine, B. M. (2017). Antimicrobial activity and chemical composition of (Kpètè-Kpètè): A starter of Benin traditional beer Tchoukoutou. BioMed Research International, 1-10. https://doi.org/10.1155/2017/6582038

Ndabikunze, B. K., Masambu, B. N., & Tiisekwa, B. M. (2010). Vitamin C and mineral contents, acceptability, and shelf life of juice prepared from four indigenous fruits of the Miombo woodlands of Tanzania. Journal of Food Agriculture and Environment, 8, 91-96.

Ngbolua, K. N., Bishola, T. T., Mpiana, P. T., Mudogo, V., Tshibangu, D. S. T., Ngombe, K. N., et al. (2014). In vitro antisickling and free radical scavenging activities of Pentaclethra macrophylla Benth. (Fabaceae). Journal of Advancement in Medical and Life Sciences, 1(2). https://doi.org/10.15297/JALS.V1I2.03

Ngbolua, K. N., Rakotoarimanana, H., Rafatro, H., Urverg, S. R., Mudogo, V., Mpiana, P. T., & Tshibangu, D. S. T. (2011). Comparative antimalarial and cytotoxic activities of two Vernonia species: V. amygdalina from the Democratic Republic of Congo and V. cinerea subsp. vialis endemic to Madagascar. International Journal of Biological and Chemical Sciences, 5(1), 345-353. https://doi.org/10.4314/ijbcs.v5i1.68111

Novak, J., Draxler, L., Gohler, I., & Franz, C. M. (2005). Essential oil composition of Vitex agnus-castus—Comparison of accessions and different plant organs. Flavour and Fragrance Journal, 20, 186-192.

NRC. (2008). Lost crops of Africa: Volume III: Fruits. The National Academies Press.

Ondo, J. P., Lekana-Douki, J. P., Bongui, J. B., Zang Edou, E. S., Zatra, R., Toure-Ndoua, F. S., Elombi, A., Lebibi, J., & Seguin, E. (2012). In vitro antiplasmodial activity and cytotoxicity of extracts and fractions of Vitex madiensis, medicinal plant of Gabon. Tropical Medicine and International Health, 17, 316-321. https://doi.org/10.1111/j.1365-3156.2011.02922.x

Padmalatha, K., Jayaram, K., Raju, N. L., Prasad, M. N. V., & Arora, R. (2009). Ethnopharmacological and biotechnological significance of Vitex. Bioremediation, Biodiversity and Bioavailability, 3, 6-14.

Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58, 4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Sarma, S. P., Aithal, K. S., Srinivasan, K. K., Udupa, A. L., Kumar, V., Kulkarni, D. R., & Rajagopal, P. K. (1990). Antiinflammatory and wound healing activities of the crude alcoholic extract and flavonoids of Vitex leucoxylon. Fitoterapia, 61, 263-265.

Sayem, S. A. J., Lee, G. Y., Abbas, M. A., Park, S. C., & Lee, S. J. (2025). Pharmacodynamic profiling of amoxicillin: Targeting multidrug-resistant gram-positive pathogens Staphylococcus aureus and Staphylococcus pseudintermedius in canine clinical isolates. Antibiotics, 14, 99. https://doi.org/10.3390/antibiotics14010099

Stojkovic, D., Sokovic, M., Glamoclija, J., Dzamic, A., Ciric, A., Ristic, M., & Grubisic, D. (2011). Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chemistry, 128(5), 1017–1022. https://doi.org/10.1016/j.foodchem.2011.04.007

Traoré, Y., Ouattara, K., Yéo, D., Doumbia, I., & Coulibaly, A. (2012). Recherche des activités antifongique et antibactérienne des feuilles d’Annona senegalensis Pers. (Annonaceae). Journal of Applied Biosciences, 58, 4234–4242.

Uyung, N. G., Onautshu, O. D., & Adirodu, A. N. (2024). Évaluation de l’activité antibactérienne des extraits des feuilles de Microglossa pyrifolia (Lam) O. Ktze et Ocimum gratissimum L. Tchiayo à Bunia. Revue Internationale du Chercheur, 5(3), 672–686.

Vianney, N. N., Bakari, A., Jean-Marie, V., Ompey, L. S., & Kahumba, B. (2023). Acute and sub-acute oral toxicities of aqueous leaf extract of Vitex madiensis Oliv. in a guinea pig model. South African Journal of Botany, 153, 157–162. https://doi.org/10.1016/j.sajb.2022.12.028

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.