Orapuh Journal | Journal of Oral & Public Health
Entomological study of Anopheles vector bionomics and persistent malaria transmission at National Malaria Control Program Sentinel sites in the Democratic Republic of the Congo
PDF (English)

Comment citer

Basosila, N., Ngbolua, K.-T.-N., Mbembo, B., Masengo, C. A., Agossa, F., Zanga, J., Mulenda, B., Ulrich, S., Nagahuedi, J., & Mukomena, E. (2024). Entomological study of Anopheles vector bionomics and persistent malaria transmission at National Malaria Control Program Sentinel sites in the Democratic Republic of the Congo. Orapuh Journal, 5(5), e1144. https://doi.org/10.4314/orapj.v5i5.44

Résumé

Introduction

In the Democratic Republic of the Congo, the malaria transmission landscape is influenced by diverse bioclimatic conditions, leading to varied transmission patterns across the country.

Purpose

The primary objective of this study was to investigate the bionomics of malaria vectors across 22 NMCP sentinel sites. By analyzing the different malaria transmission facies, we aimed to provide detailed insights into vector behavior and abundance to inform more effective malaria control strategies.

Methods
Mosquitoes were captured at 22 sentinel sites, with sampling conducted in 20 randomly selected households per site. These households were divided into two groups: ten utilized human bait traps, and the remaining ten employed pyrethrum spray catches. The captures were performed over five consecutive nights every six months. A total of 1,723 Anopheles mosquitoes were collected for analysis.

Results

The study identified five Anopheles species, with Anopheles gambiae s.l. being the most abundant and primary vector, representing 75% of the total captures. The other species included An. funestus group (15%), An. paludis (12%), An. coustani (0.3%), and An. nili (0.2%). Behavioral observations revealed that An. gambiae s.l. is active both indoors and outdoors, with peak biting occurring from 9 p.m. to 4 a.m., and an average biting density of 12 bites per person per night. 13209 mosquitoes (i.e., 88.5%) were captured using the HLC method, while, among the 1,723 mosquitoes captured using the PSC method, 51% were blood-fed, 24% were semi-gravid, 18% were gravid, and 7% were fasting. An. gambiae s.l. was found to be present year-round, contributing to continuous malaria transmission.

Conclusion

This study provides crucial data on the prevalence and behavior of malaria vectors, particularly emphasizing the role of Anopheles gambiae s.l. as the primary vector in malaria transmission. The findings highlight significant differences in bite rates among species and the year-round activity of An. gambiae s.l., underscoring the need for targeted vector control measures. The data will be used to refine and implement effective vector control strategies, such as long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS), to reduce malaria transmission and mortality rates at NMCP sentinel sites.

https://doi.org/10.4314/orapj.v5i5.44
PDF (English)

Références

Bamou, R., Kopya, E., & Djamouko-Djonkam, L. (2020). Resistance of local malaria vectors in the forest region of southern Cameroon: Assessment of the Anophelinae blood-seeking bionomic and pyrethroids resistance of local malaria vectors in the forest region of southern Cameroon. Journal of Entomology and Zoology Studies, 8(1), 1054–1062.

Basosila, N., Ngbolua, J.-P., Eric, M., Mawunu, M., Irish, S., Basimike, M., & Jonas, N. (2022). Study of the behavior and entomological parameters of Anopheles in two health zones of the North-Ubangi Province, Democratic Republic of Congo. Egyptian Academic Journal of Biological Sciences, E. Medical Entomology & Parasitology, 14(2), 57–63. https://doi.org/10.21608/eajbse.2022.259846

Bobanga, T., Umesumbu, S. E., Mandoko, A. S., Nsibu, C. N., Dotson, E. B., Beach, R. F., & Irish, S. R. (2016). Presence of species within the Anopheles gambiae complex in the Democratic Republic of Congo. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(6), 373–375. https://doi.org/10.1093/trstmh/trw035

Chinappi, M., Via, A., Marcatili, P., & Tramontano, A. (2010). On the mechanism of chloroquine resistance in Plasmodium falciparum. PLoS ONE, 5(11), e14064. https://doi.org/10.1371/journal.pone.0014064

Collins, W. E., & Jeffery, G. M. (2005). Plasmodium malariae: Parasite and disease. Clinical Microbiology Reviews, 18(3), 570–581. https://doi.org/10.1128/CMR.00027-07

De Silva, P. M., & Marshall, J. M. (2012). Factors contributing to urban malaria transmission in sub-Saharan Africa: A systematic review. Journal of Tropical Medicine, 2012, 1–10. https://doi.org/10.1155/2012/819563

Dondorp, A. M., Nosten, F., Yi, P., Das, D., Phyo, A. P., Tarning, J., Lwin, K. M., Ariey, F., Hanpithakpong, W., Lee, S. J., Ringwald, P., Silamut, K., Herdman, T., An, S. S., Yeung, S., Socheat, D., & White, N. J. (2009). Artemisinin resistance in Plasmodium falciparum malaria. Drug Therapy, 361(5), 455–467. http://www.ncbi.nlm.nih.gov/pubmed/21543403

Ebhodaghe, F. I., Sanchez-Vargas, I., Isaac, C., et al. (2024). Sibling species of the major malaria vector Anopheles gambiae display divergent preferences for aquatic breeding sites in southern Nigeria. Malaria Journal, 23, 60. https://doi.org/10.1186/s12936-024-04871-9

Ermert, V., Fink, A. H., Morse, A. P., & Paeth, H. (2012). The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environmental Health Perspectives, 120(1), 77–84. https://doi.org/10.1289/ehp.1103681

Gillies, M. T., & Coetzee, M. (1987). A supplement to the Anophelinae of Africa South of the Sahara. South African Institute for Medical Research, 55, 1–145.

Hawadak, J., Dongang Nana, R. R., & Singh, V. (2021). Global trend of Plasmodium malariae and Plasmodium ovale spp. malaria infections in the last two decades (2000–2020): A systematic review and meta-analysis. Parasites & Vectors, 14(1), 294. https://doi.org/10.1186/s13071-021-04797-0

Hii, J. L. K., Smith, T., Mai, A., Ibam, E., & Alpers, M. P. (2000). Comparison between anopheline mosquitoes (Diptera: Culicidae) caught using different methods in a malaria endemic area of Papua New Guinea. Bulletin of Entomological Research, 90(3), 211–219. https://doi.org/10.1017/s000748530000033x

Initiative Malaria Elimination. (2020). Outil de planification de la surveillance entomologique.

Kalala, D.-J. M., & Fyama, J. N. M. (2019). Crises alimentaires et mesures d’atténuation en République démocratique du Congo. Revue des stratégies et promotion de bonnes pratiques. In Konrad Adenauer Stiftung. www.kas.de

Karch, S., & Mouchet, J. (1992). Anopheles paludis: Important vector of malaria in Zaire. Bulletin de la Société de Pathologie Exotique (1990), 85(5), 388–389.

Kouassi, B. L., Edi, C., Ouattara, A. F., Ekra, A. K., Bellai, L. G., Gouaméné, J., Kacou, Y. A. K., Kouamé, J. K. I., Béké, A. H. O., Yokoli, F. N., Gbalegba, C. G. N., Tia, E., Yapo, R. M., Konan, L. Y., N’Tamon, R. N., Akré, M. A., Koffi, A. A., Tanoh, A. M., & Chabi, J. (2023). Entomological monitoring data driving decision-making for appropriate and sustainable malaria vector control in Côte d’Ivoire. Malaria Journal, 22(1), 14. https://doi.org/10.1186/s12936-023-04439-z

Lelisa, K., Asale, A., Taye, B., Emana, D., & Yewhalaw, D. (2017). Anopheline mosquitoes behaviour and entomological monitoring in southwestern Ethiopia. Journal of Vector Borne Diseases, 54(3), 240–248. https://doi.org/10.4103/0972-9062.217615

Lobo, N. F., St. Laurent, B., Sikaala, C. H., Hamainza, B., Chanda, J., Chinula, D., Krishnankutty, S. M., Mueller, J. D., Deason, N. A., Hoang, Q. T., Boldt, H. L., Thumloup, J., Stevenson, J., Seyoum, A., & Collins, F. H. (2015). Unexpected diversity of Anopheles species in Eastern Zambia: Implications for evaluating vector behavior and interventions using molecular tools. Scientific Reports, 5, 17952. https://doi.org/10.1038/srep17952

Loonen, J. A. C. M., Dery, D. B., Musaka, B. Z., Bandibabone, J. B., Bousema, T., Lenthe, M. Van, Stefanija, B. P., Fesselet, J. F., & Koenraadt, C. J. M. (2020). Identification of main malaria vectors and their insecticide resistance profile in internally displaced and indigenous communities in Eastern Democratic Republic of the Congo (DRC). Malaria Journal, 19(425), 1–14. https://doi.org/10.1186/s12936-020-03497-x

Matubi, E. M., Kaounga, G. I., Zanga, J., Mbuku, G. B., Maniania, J. N. K., Mulenda, B., Sodi, J. N. M., Tamfum, J. J. M., & Masiangi, P. (2020). Insecticide susceptibility of Anopheles gambiae S.L and identification of some resistance mechanisms in Kwilu province in the Democratic Republic of Congo. Pan African Medical Journal, 37, 79. https://doi.org/10.11604/pamj.2020.37.79.18635

Metelo-Matubi, E., Zanga, J., Binene, G., Mvuama, N., Ngamukie, S., Nkey, J., Schopp, P., Bamba, M., Irish, S., Nguya-Kalemba-Maniania, J., Fasine, S., Nagahuedi, J., Muyembe, J. J., & Mansiangi, P. (2021). The effect of a mass distribution of insecticide-treated nets on insecticide resistance and entomological inoculation rates of Anopheles gambiae s.l. in Bandundu City, Democratic Republic of Congo. Pan African Medical Journal, 40(118). https://doi.org/10.11604/pamj.2021.40.118.27365

N’do, S., Bandibabone, J. B., Soma, D. D., Musaka, B. Z., Prudhomme, J., Habamungu, C. C., Namountougou, M., Sangaré, I., Kientega, M., Kaboré, D. A. P., Bayili, K., Yerbanga, R. S., Diabate, A., Dabire, R. K., Ouedraogo, J. B., Belem, A. M. G., Boëte, C., Guardiola-Claramonte, M., & Chimanuka, B. (2021). Insecticide resistance profiles in malaria vector populations from Sud-Kivu in the Democratic Republic of the Congo. Transactions of the Royal Society of Tropical Medicine and Hygiene, 115(11), 1339–1344. https://doi.org/10.1093/trstmh/trab116

Nardini, L., Hunt, R. H., Dahan-Moss, Y. L., Christie, N., Christian, R. N., Coetzee, M., & Koekemoer, L. L. (2017). Malaria vectors in the Democratic Republic of the Congo: The mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus. Malaria Journal, 16(448). https://doi.org/10.1186/s12936-017-2099-y

Nguiffo-Nguete, D., Mugenzi, L. M. J., Manzambi, E. Z., Tchouakui, M., Wondji, M., Tekoh, T., Watsenga, F., Agossa, F., & Wondji, C. S. (2023). Evidence of intensification of pyrethroid resistance in the major malaria vectors in Kinshasa, Democratic Republic of Congo. Scientific Reports, 13, 14711. https://doi.org/10.1038/s41598-023-41952-2

Nundu, S. S., Culleton, R., Simpson, S. V., Arima, H., Muyembe, J. J., Mita, T., Ahuka, S., & Yamamoto, T. (2021). Malaria parasite species composition of Plasmodium infections among asymptomatic and symptomatic school-age children in rural and urban areas of Kinshasa, Democratic Republic of Congo. Malaria Journal, 20, 389. https://doi.org/10.1186/s12936-021-03919-4

O'Meara, W. P., Mangeni, J. N., Steketee, R., & Greenwood, B. (2010). Changes in the burden of malaria in sub-Saharan Africa. The Lancet Infectious Diseases, 10(8), 545–555. https://doi.org/10.1016/S1473-3099(10)70096-7

PMI. (2018). The President’s Malaria Initiative (PMI)/Africa Indoor Residual Spraying (AIRS) Project. Democratic Republic of the Congo 2017 Entomological Monitoring Report. PMI AIRS Project Indoor Residual Spraying (IRS 2) Task Order Six, Abt.

PMI. (2020). PMI VectorLink Project: The Democratic Republic of Congo annual entomological monitoring report.

PNLP. (2022). Rapport annuel 2022.

PNLP. (2023). Plan stratégique national de lutte contre le paludisme 2020-2023. https://doi.org/10.3138/9781442656505-toc

Promesse, C., & Kaniki, K. (2020). Long-lasting insecticide-treated mosquito nets in the Democratic Republic of the Congo: Knowledge, attitudes and practices among households in Bonzola. Research Square. https://doi.org/10.21203/rs.3.rs-30044/v1

Riveron, J. M., Watsenga, F., Irving, H., Irish, S. R., & Wondji, C. S. (2018). High Plasmodium infection rate and reduced bed net efficacy in multiple insecticide-resistant malaria vectors in Kinshasa, Democratic Republic of Congo. Journal of Infectious Diseases, 217, 320–328. https://doi.org/10.1093/infdis/jix570

Soma, D. D., Zogo, B. M., Some, A., Tchiekoi, B. N. C., De Sales Hien, D. F., Pooda, H. S., Coulibaly, S., Gnambani, J. E., Ouari, A., Mouline, K., Dahounto, A., Ouedraogo, G. A., Fournet, F., Koffi, A. A., Pennetier, C., Moiroux, N., & Dabire, R. K. (2020). Anopheles bionomics, insecticide resistance, and malaria transmission in southwest Burkina Faso: A pre-intervention study. PLoS ONE, 15(8). https://doi.org/10.1371/journal.pone.0236920

Takken, W., Charlwood, D., & Lindsay, S. W. (2024). The behaviour of adult Anopheles gambiae, sub-Saharan Africa’s principal malaria vector, and its relevance to malaria control: A review. Malaria Journal, 23, 161. https://doi.org/10.1186/s12936-024-04982-3

Thomson, R. C. M. (1947). The effects of house spraying with pyrethrum and with DDT on Anopheles gambiae and A. melas in West Africa. Bulletin of Entomological Research, 449–464. https://doi.org/10.1017/S0007485300022276

Tusting, L. S., Bottomley, C., Gibson, H., Kleinschmidt, I., Tatem, A. J., Lindsay, S. W., & Gething, P. W. (2017). Housing improvements and malaria risk in sub-Saharan Africa: A multi-country analysis of survey data. PLoS Medicine, 14(2), e1002234. https://doi.org/10.1371/journal.pmed.1002234

Wat’senga, F., Agossa, F., Manzambi, E. Z., Illombe, G., Mapangulu, T., Muyembe, T., Clark, T., Niang, M., Ntoya, F., Sadou, A., Plucinski, M., Li, Y., Messenger, L. A., Fornadel, C., Oxborough, R. M., & Irish, S. R. (2020). Intensity of pyrethroid resistance in Anopheles gambiae before and after a mass distribution of insecticide-treated nets in Kinshasa and in 11 provinces of the Democratic Republic of Congo. Malaria Journal, 19(1), 1–13. https://doi.org/10.1186/s12936-020-03240-6

Wat’senga, F., Manzambi, E. Z., Lunkula, A., Mulumbu, R., Mampangulu, T., Lobo, N., Hendershot, A., Fornadel, C., Jacob, D., Niang, M., … Oxborough, R. M. (2018a). Nationwide insecticide resistance status and biting behaviour of malaria vector species in the Democratic Republic of Congo. Malaria Journal, 17(129). https://doi.org/10.1186/s12936-018-2285-6

Soma, D. D., Zogo, B. M., Some, A., Tchiekoi, B. N. C., De Sales Hien, D. F., Pooda, H. S., Coulibaly, S., Gnambani, J. E., Ouari, A., Mouline, K., Dahounto, A., Ouedraogo, G. A., Fournet, F., Koffi, A. A., Pennetier, C., Moiroux, N., & Dabire, R. K. (2020). Anopheles bionomics, insecticide resistance, and malaria transmission in southwest Burkina Faso: A pre-intervention study. PLoS ONE, 15(8), e0236920. https://doi.org/10.1371/journal.pone.0236920

Sow, A., Poudiougo, I. K., Zongo, M., Nignan, T., Kone, A., Ouedraogo, J. B., Diallo, S. M., Traore, H., & Konate, S. (2023). Resistance to insecticides and its impact on malaria transmission in Anopheles mosquitoes in Bobo-Dioulasso, Burkina Faso. Malaria Journal, 22, 58. https://doi.org/10.1186/s12936-023-04559-1

Tusting, L. S., Bottomley, C., Gibson, H., Kleinschmidt, I., Tatem, A. J., Lindsay, S. W., & Gething, P. W. (2017). Housing improvements and malaria risk in sub-Saharan Africa: A multi-country analysis of survey data. PLoS Medicine, 14(2), e1002234. https://doi.org/10.1371/journal.pmed.1002234

Viana, M., Da Silva, D. C. P., De Almeida, M. L., Goulart, M. M., & Lima, D. B. S. (2022). Anopheles mosquitoes in the Brazilian Amazon: Current status of insecticide resistance and its implications for malaria transmission. Acta Tropica, 231, 106455. https://doi.org/10.1016/j.actatropica.2022.106455

Watsenga, F., Agossa, F., Manzambi, E. Z., Illombe, G., Mapangulu, T., Muyembe, T., Clark, T., Niang, M., Ntoya, F., Sadou, A., Plucinski, M., Li, Y., Messenger, L. A., Fornadel, C., Oxborough, R. M., & Irish, S. R. (2020). Intensity of pyrethroid resistance in Anopheles gambiae before and after a mass distribution of insecticide-treated nets in Kinshasa and in 11 provinces of the Democratic Republic of Congo. Malaria Journal, 19(1), 1–13. https://doi.org/10.1186/s12936-020-03240-6

Watsenga, F., Manzambi, E. Z., Lunkula, A., Mulumbu, R., Mampangulu, T., Lobo, N., Hendershot, A., Fornadel, C., Jacob, D., Niang, M., … Oxborough, R. M. (2018a). Nationwide insecticide resistance status and biting behaviour of malaria vector species in the Democratic Republic of Congo. Malaria Journal, 17(129). https://doi.org/10.1186/s12936-018-2285-6

Wondji, C. S., & Ndo, S. (2020). Anopheles species complex and their malaria vectorial capacity in the Democratic Republic of Congo. Tropical Medicine and Infectious Disease, 5(3), 103. https://doi.org/10.3390/tropicalmed5030103

Zhou, Z., Zhan, J., Yang, W., Liu, J., & Jiang, R. (2022). Resistance of Anopheles mosquitoes to insecticides: A review of current status and prospects for control in China. Environmental Science and Pollution Research, 29, 30788–30803. https://doi.org/10.1007/s11356-021-17888-5

Creative Commons License

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.