Orapuh Journal | Journal of Oral & Public Health
Antioxidant, anti-inflammatory and antidiabetic activities of the combination of Curcuma longa (Zingiberaceae), Aframomum melegueta (Zingiberaceae) and Piper guineensis (Piperaceae) compared to plants alone
PDF

Keywords

Curcuma longa
Aframomum melegueta
Piper guineensis
antioxidant
anti-inflammatory
antidiabetic

How to Cite

Mayele, B. M., Mbadiko, C. M., Mubwele, A., Nyamangombe, G. I., Kabamba, N. N., Ngbolua, K.-T.-N., & Mbemba, T. F. (2025). Antioxidant, anti-inflammatory and antidiabetic activities of the combination of Curcuma longa (Zingiberaceae), Aframomum melegueta (Zingiberaceae) and Piper guineensis (Piperaceae) compared to plants alone. Orapuh Journal, 6(5), e1246. https://doi.org/10.4314/orapj.v6i5.46

Abstract

Introduction

Diabetes mellitus is a group of diseases characterized by chronic hyperglycemia resulting from a disturbance in insulin secretion, function, or both. It is currently one of the major public health problems.

Purpose

The aim of this study was to quantify secondary metabolites, evaluate the biological activities of individual plants, and assess the combination's antioxidant, anti-inflammatory, and antidiabetic activities compared to the plants used individually.

Methods

To conduct this study, we examined the qualitative and quantitative composition of some metabolites using conventional methods. We assessed the antioxidant activities in vitro using DPPH• and ABTS• radicals. The antidiabetic activity was evaluated using the glucose oxidase method, while the anti-inflammatory activity was determined in vitro using the protein denaturation method (albumin).

Results

Our findings revealed that the CAP combination contained all the investigated metabolites, and the concentrations of polyphenols, flavonoids, and tannins were higher than those of the individual plants. The anti-inflammatory and antidiabetic activities of CAP were superior for both extracts, although the antioxidant activity of CAP was lower compared to C. longa and A. melegueta for organic extracts on the ABTS• radical.

Conclusion

The combination of these plants could be a prudent choice as part of a strategy to combat diabetes, particularly through herbal medicine.

https://doi.org/10.4314/orapj.v6i5.46
PDF

References

Abdou, R. M., El-Moadawy, W. H., Hassan, M., El-Dine, R. S., Aboushousha, T., El-Tanbouly, N. D., & El-Sayed, A. M. (2021). Nephroprotective activity of Aframomum melegueta seeds extract against diclofenac-induced acute kidney injury: A mechanistic study. Journal of Ethnopharmacology, 273, 113939. https://doi.org/10.1016/j.jep.2021.113939

Ahmad, M., Hafeez Kamran, S., & Mobasher, A. (2014). Protective effect of crude Curcuma longa and its methanolic extract in alloxanized rabbits. Pakistan Journal of Pharmaceutical Sciences, 27(1).

Alagbe, O., Alagbe, G., Adekunle, E. A., Ayodele, O. O., Olorode, E., Oyeduan, R. I., Oloyede, O., Oluwaloni, F. O., & Oyeleye, A. O. (2021). Ethnomedicinal use and therapeutic activities of Piper guineensis: Review. Journal of Applied Science, 25(6), 927–937. https://doi.org/10.4314/jasem.v25i6.6

Alappat, L., & Awad, A. B. (2010). Curcumin and obesity: Evidence and mechanisms. Nutrition Reviews, 68(12), 729–738.

Azizi, B., Mohseni, S., Tabatabei-Molazy, O., Esmaeili, F., Khodaeian, M., Qorbani, M., Nazeri, E., & Nouhi, Z. (2023). Meta-analysis of the anti-oxidative and anti-inflammatory effects of hypoglycemic plant-derived medicines. Inflammopharmacology, 31, 2521–2539. https://doi.org/10.1007/s10787-023-01315-9

Berbundi, A., Rahmadika, N., Tjahjadi, A. I., & Ruslami, R. (2020). Type 2 diabetes and its impact on the immune system. Current Diabetes Reviews, 16(5), 442–449. https://doi.org/10.2174/1573399815666191024085838

Cho, H. K., Park, C. G., & Lim, H. B. (2024). Construction of a synergy combination model for turmeric (Curcuma longa L.) and black pepper (Piper nigrum L.) extract: Enhanced anticancer activity against A549 and NCI-H92 human lung cancer cells. Current Issues in Molecular Biology, 46, 5551–5560. https://doi.org/10.3390/cimb46060332

Cianciulli, A., Calvello, R., Porro, C., Trotta, T., Salvatore, R., & Panaro, M. A. (2016). PI3K/Akt signaling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. International Immunopharmacology, 36, 282–290.

Constantini, E., Masciarelli, E., Casorri, L., Di Luigi, M., & Reale, M. (2022). Medicinal herbs and multiple sclerosis: Overview on the hard balance between new therapeutic strategies and occupational health risk. Frontiers in Cellular Neuroscience, 16, 985943.

Cousin, E., Schmidt, M. I., Ong, K. L., Lozano, R., Afshin, A., Abushouk, A. I., ... & Duncan, B. B. (2022). Burden of diabetes and hyperglycaemia in adults in the Americas, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Diabetes & Endocrinology, 10(9), 655–667.

Darenskaya, M. A., Kolesnikova, L. I., & Kolesnikov, S. I. (2021). Oxidative stress pathogenic role in diabetes mellitus and its complication and therapeutic approaches to correction. Bulletin of Experimental Biology and Medicine, 171, 179–189. https://doi.org/10.1007/s10517-021-05191-7

Ghorbani, Z., Hekmatdoost, A., & Mirmiran, P. (2014). Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. International Journal of Endocrinology and Metabolism, 12(4).

Gloss, C. K., & Olefsky, J. M. (2012). Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metabolism, 15(5), 635–645. https://doi.org/10.1016/j.cmet.2012.04.001

IDF. (2019). IDF Diabetes Atlas (9th ed.).

Kanoune, K. (2021). Phytotherapy between interests and risks.

Kapepula, P. M., Mbombo, P. M., Franck, F., Mouithys-Mickalad, A., Mumba, N. D., Dibungi, K. P., Kabamba, N. N., Tits, M., Frédérich, M., & Tamfum, M. J. J. (2016). Antioxidant potential of three herbal teas consumed in Bandundu rural areas of Congo. Natural Product Research, 31(16), 1–4.

Karłowicz-Bodalska, K., Han, S. Ł. A., Freier, J., Smoleński, M., & Bodalska, A. (2017). Curcuma longa as medicinal herb in the treatment of diabetic complications. Acta Poloniae Pharmaceutica – Drug Research, 74(2), 605–610.

Karlsson, F. H., Tremaroli, V., Intawat, N., Bergström, G., Beher, C. J., Fagerberg, B., Nielsen, J., & Bäckhed, F. (2013). Gut metagenomics in European women with normal, odd and diabetic glucose control. Nature, 498, 99–103. https://doi.org/10.1038/nature12198

Khan, I., Ahmad, H., & Ahmad, B. (2014). Anti-glycation and anti-oxidation properties of Capsicum frutescens and Curcuma longa fruits: Possible role in prevention of diabetic complications. Pakistan Journal of Pharmaceutical Sciences, 27(5), 1359–1362.

Kumari, C. S., Yasmin, N., Raffig, H. M., & Babuselvam, M. (2015). In vitro inflammatory and anti-arthritic property of Rhizophora mucronata leaves. International Journal of Pharma Sciences and Research (IJPSR), 6(3).

Lecerf, J. M. (2012). Metabolic effects of curcumin (obesity, circulating lipids, insulin resistance, diabetes and atherosclerosis). Phytotherapy, 2(10), 100–104.

Lekshmi, P., Ranijith, A., Nisha, V., Nirmala, M., & Raghu, K. (2013). In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa) rhizome against cellular and LDL oxidation and angiotensin converting enzyme. Journal of Food Science and Technology, 51(12), 3910–3917. https://doi.org/10.1007/s13197-013-0953-7

Liju, V. B., Jeena, K., & Kuttan, R. (2011). An evaluation of antioxidant, anti-inflammatory, and antinociceptive activities of essential oil from Curcuma longa L. Indian Journal of Pharmacology, 43(5), 526–531.

Liu, C., Yuan, Y., Zhou, J., Hu, R., Ji, L., & Jiang, G. (2020). Piperine ameliorates insulin resistance via inhibition of metabolic inflammation in monosodium glutamate-treated obese mice. BMC Endocrine Disorders, 20, 152. https://doi.org/10.1186/s12902-020-00617-1

Lontchi-Yimagou, E., Sobngwi, E., Matsha, T. E., & Kengne, A. P. (2013). Diabetes mellitus and inflammation. Current Diabetes Reports, 13(3), 435–444. https://doi.org/10.1007/s11892-013-0375-y

Marchant, M. J., Molina, P., Montecinos, M., Guzman, L., Bolada, C., & Castro, M. (2022). Effects of LED light spectra on the development, phytochemical profile and antioxidant activity of Curcuma longa from aster bland. Plants, 11(20), 2701. https://doi.org/10.3390/plants11202701

Matulewicz, N., & Karczeneska-Kapezeneka, M. (2016). Insulin resistance and chronic inflammation. Postepy Higieny i Medycyny Doswiadczalnej (Online), 70, 1245–1258. https://doi.org/10.5604/17322693.1226662

Mayele, B. M., Mbandiko, C. M., Ngombe, N. K., Ngbolua, K. N., & Mbemba, T. F. (2024). Antioxidant and hypoglycemic activities of Curcuma longa L. rhizome harvested from the plateau of Bateke. Orapuh Journal, 5(1), e1104.

Mbadiko, C. M., Koto-te-Nyiwa, N., Mpiana, P. T., Ngombe, N. K., Kapepula, P. M., Kemfine, L. L., Bongo, G. N., & Mbemba, T. F. (2019). Antioxidant potential and anti-sickling activity of different organs of Curcuma longa: Correlation of the antioxidant capacity on anti-sickling activity. South Asian Research Journal of Natural Products, 2(2), 1–16. https://doi.org/10.9734/SARJNP/2019/v2i230075

Mohammed, A., Gbonjubola, V. A., Koorbanally, N. A., & Md. Shahidul Islam. (2017). Inhibition of key enzyme linked to type 2 diabetes by compounds isolated from Aframomum melegueta. Pharmaceutical Biology, 55(1), 1285–1291. https://doi.org/10.1080/13880209.2017.1286358

Mohankumar, S., & McFarlane, J. R. (2011). An aqueous extract of Curcuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro. Phytotherapy Research, 25(3), 396–401. https://doi.org/10.1002/ptr.3266

Nebrisi, E. E. (2021). Neuroprotective activities of curcumin in Parkinson's disease: A review of the literature. International Journal of Molecular Sciences, 22(20), 11248. https://doi.org/10.3390/ijms222011248

Nguele, L. R., Fokunang, C. N., Etoundi, C., Chakokan, R. M., Ngondi, J. L., Tembe, E. A., Kechia, F., Nganemi, B., Gatsing, D., & Eyong, J. O. (2017). Use of Aframomum species (A. aulacocorpus, A. citratum, A. deniellii) for weight control, lipid profile and antioxidant status in Wistar rats fed an atherogenic diet. International Journal of Biological and Chemical Sciences, 10(6), 2233–2243. https://doi.org/10.4314/jbcs.v10i6.14

Nyamangombe, G., Mayele, B., Nzembo, F., Nzundu, J. P., & Amogu, J. J. (2023). Evaluation of the toxicity of aqueous extract of Ganoderma applanatum mushroom. Moroccan Journal of Science, 4(4), 177–184. https://doi.org/10.5281/zenodo.10426349

Nyamangombe, G. L., Mayele, B. M., Nkasa, H. L., Tshidibi, J. D., Mpiana, E. M., Masikini, F. B., … & Mubwele, A. (2024). Assessment of the photoprotective and antimicrobial activity of two dermatological creams based on Mathesia and oil of Curcuma longa L. (Zingiberaceae) on Albino. Orapuh Journal, 5(4), e1131.

Olatunde, A., Obidola, M. S., Tijjani, H., & Joël, E. B. (2014). Antidiabetic activity of aqueous extract of Curcuma longa (L) rhizome in normal and alloxan-induced diabetic rats. Researcher, 6(7), 58–67.

Omoba, S. O., Olagunju, A. I., Salawu, S. O., & Boligo, A. A. (2019). HPLC-DAD phenolic profiling and in vitro antioxidant activities of three prominent Nigerian species. Preventive Nutrition and Food Science, 24(2), 179–186. https://doi.org/10.3746/pfn.2019.24.2.179

Omosa, L. K., Midiwo, J. O., & Kuete, V. (2017). Curcuma longa. In Medicinal spices and vegetables from Africa (pp. 425–435). Academic Press.

Onyango, A. N. (2018). Cellular stress and stress responses in the pathogenesis of insulin resistance. Oxidative Medicine and Cellular Longevity, 2018, 4321714. https://doi.org/10.1155/2018/4321714

Partial, V., Sukapaka, M., Sharma, S., Pratap, K., Singh, D., & Padwad, Y. (2015). Synergistic effect of curcumin and piperine in suppression of DENA-induced hepatocellular carcinoma in rat. Environmental Toxicology and Pharmacology, 40(2), 445–452. https://doi.org/10.1016/j.etap.2015.07.012

Quiros-Fallas, M. I., Vargas-Huertas, F., Quesada-Mora, S., Azofeifa-Cordero, G., Wilhelm-Romero, K., Vasquez-Castro, F., Alvarado-Corella, D., Sanchez-Kopper, A., & Navarro-Hoya, M. (2022). Polyphenolic HRMS characterization content and antioxidant activity of Curcuma longa rhizome from Costa Rica. Antioxidants, 11(4), 620. https://doi.org/10.3390/antiox1104620

Salehi, B., Ata, A. V., Kumar, A. N., Sharopov, F., Ramirez-Alarcon, J. L., Ruiz-Ortega, A., Ayatollahi, S. A., et al. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551

Sehgal, A., Kumar, M., Jain, M., & Dhawan, S. (2011). Synergistic effect of piperine and curcumin in modulating benzo(a)pyrene-induced redox imbalance in mice lung. Toxicology Mechanisms and Methods, 22(1), 74–80.

Shao-Ling, W., Ying, L., Ying, W., Yan-Feng, C., Li-Xin, N., Song-Tao, L., & Chang-Hao, S. (2009). Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway. Biomedical and Environmental Sciences, 22(1), 32–39.

Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., ... & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694

Sheykhi, M., Chahartaghi, M., Balakheli, M. M., Hashemian, S. M., Miri, S. M., & Rafiee, N. (2019). Performance investigation of a combined heat and power system with internal and external combustion engines. Energy Conversion and Management, 185, 291–303.

Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. S. S. R. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(04), 353–356.

Stati, G., Rossi, F., Sancilio, S., Basile, M., & Di Pietro, R. (2021). Curcuma longa hepatotoxicity: a baseless accusation. Cases assessed for causality using RUCAM method. Frontiers in Pharmacology, 12, 780330. https://doi.org/10.3389/fphar.2021.780330

Toh, E. V. S., Lim, C. L., Ling, A. P. K., Chye, S. M., & Koh, R. Y. (2019). Overview of the pharmacology activities of Aframomum melegueta. Tropical Agriculture Science, 42(1), 1–13.

Vafaeipour, Z., Razavi, B. M., & Hosseinzadeh, H. (2022). Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review. Journal of Integrative Medicine, 20(3), 193–203.

Widowati, W., Wargasetia, T. L., Afifah, E., Mozef, T., Kusuma, H. S. W., Nufus, H., Arumzardana, S., Amalia, A., & Rizal, R. (2018). Antioxidant and antidiabetic potential of Curcuma longa and its compounds. Asia Journal of Agriculture and Biology, 6(2), 149–161.

Zhang, H. A., & Kitts, D. D. (2021). Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Molecular and Cellular Biochemistry, 476(10), 3785–3814.

Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., & Zhang, Y. (2020). Oxidative stress and diabetes: antioxidative strategies. Frontiers of Medicine, 14(5), 583–600. https://doi.org/10.1007/s11684-019-0729-1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.