Orapuh Journal | Journal of Oral & Public Health
Extraction of secondary metabolites responsible for biological activities from the leaf callus of Tetracera rosiflora
PDF

Keywords

Secondary metabolites
callus
biological activities
T. rosiflora

How to Cite

Seudi, A. K., Muanyishay, C. L., Muabu, A. K., Bulubulu, F. O., Kazadi, T. K., Amogu, J.-J. D., Tshiongo, C. M., Taba, N. K., & Ntumba, J. K. (2025). Extraction of secondary metabolites responsible for biological activities from the leaf callus of Tetracera rosiflora. Orapuh Journal, 6(5), e1243. https://doi.org/10.4314/orapj.v6i5.43

Abstract

Introduction

Tetracera rosiflora Gilg is a plant used in traditional Congolese medicine for its multiple virtues, including antidiabetic effects. However, this species is threatened with extinction due to habitat destruction and overexploitation of its natural resources.

Purpose

To address this issue, it is essential to explore alternative methods for producing its bioactive secondary metabolites, such as through in vitro culture.

Methods

This study aimed to extract the secondary metabolites responsible for biological activities (antidiabetic and anti-amylase) and compare their concentrations in both the wild plant and in vitro-derived callus. A phytochemical screening was conducted on the leaves and various extracts of T. rosiflora.

Results

In vitro culture of T. rosiflora yielded higher callogenesis rates for stem explants on MS + 2,4-D medium (48%) and for leaf explants on MS + AIB + BAP medium (50%). Quantification of polyphenols revealed that the wild plant contained significantly higher levels (28.13 ± 1.18 mg gallic acid equivalent/g dry mass) compared to the callus, which showed a maximum of 1.41 ± 0.0045 mg gallic acid equivalent/g dry mass.

Conclusion

This study contributes to the potential amplification of valuable secondary metabolites from endangered wild species through callogenesis techniques.

https://doi.org/10.4314/orapj.v6i5.43
PDF

References

Abdel-Hassan, I. A., Abdel-Barry, J. A., & Tariq Mohammeda, S. (2000). The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. Journal of Ethnopharmacology, 71(2), 325–330.

Abdel-Zaher, A. O., Salim, S. Y., Assaf, M. H., & et al. (2005). Antidiabetic activity and toxicity of Zizyphus spina-christi leaves. Journal of Ethnopharmacology, 101(1), 129–138.

Alarcon-Aguilara, F. J., Roman-Ramos, R., Perez-Gutierrez, S., & et al. (1998). Study of the antihyperglycemic effect of plants used as antidiabetics. Journal of Ethnopharmacology, 61(1), 101–104.

American Diabetes Association (ADA). (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(Supplement 1), S81–S90.

Ansari, P., Akther, S., Hannan, J. M. A., Seidel, V., Nujat, N. J., & Abdel-Wahab, Y. H. A. (2022). Pharmacologically active phytomolecules isolated from traditional antidiabetic plants and their therapeutic role for the management of diabetes mellitus. Molecules, 27(13), 4278. https://doi.org/10.3390/molecules27134278

Asemota, O., Eke, C. R., & Odewale, J. O. (2007). Date palm (Phoenix dactylifera L.) in vitro morphogenesis in response to growth regulators, sucrose, and nitrogen. African Journal of Biotechnology, 6(20), 2353–2357.

Augé, R., Beauchesne, G., Boccon-Gibod, J., Decourtye, L., Digat, B., Jalouzot, R., Minier, R., & Baba Aissa, F. (2011). Encyclopedie des plantes utiles. Elmarifa, BEO Alger.

Bellakhdar, J., Claisse, R., Fleurentin, J., & et al. (1991). Repertory of standard herbal drugs in the Moroccan pharmacopoeia. Journal of Ethnopharmacology, 35(1), 123–143.

Benamar, S., & Khacheba, A. (2008). Effects of extracts of some local medicinal plants on alpha-amylase. Master’s thesis, Amar Telidji-Laghouat University, Algeria.

Benkerrou, Z., & Younici, S. (2014). In vitro evaluation of anti-α-amylase and anti-lipase activity of Citrus limon pulp extracts. Master’s thesis, Abderrahmane Mira University of Bejaia, Algeria.

Bennacer, H. (2017). Inhibitory effect of Zygophyllum geslini extracts on alpha-amylase activity. Master’s thesis, Abou Bekr Belkaid University-Tlemcen, Algeria.

Bommer, U.-A., Vine, K. L., Puri, P., Engel, M., Belfiore, L., Fildes, K., Batterham, M., Lochhead, A., & Aghmesheh, M. (2017). Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Communication and Signaling, 15(1), 9. https://doi.org/10.1186/s12964-017-0164-3

Carter, D. (2004). Diabetes mellitus: An update for healthcare professionals. British Medical Association Board of Science and Education, BMA Publications Unit.

Chabane, D., Saidi, F., Rouibi, A., & Azine, K. (2013). Hypoglycemic activity of aqueous extract of Ajuga iva L. schreber in diabetic rats induced by alloxane. Afrique Science, 9(1), 120–127.

Danaei, G., Finucane, M. M., Lu, Y., Singh, G. M., Cowan, M. J., Paciorek, C. J., & Stevens, G. A. (2011). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. The Lancet, 378(9785), 31–40.

Eddouks, M., Maghrani, M., Lemhadri, A., & et al. (2002). Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension, and cardiac diseases in the southeast region of Morocco (Tafilalet). Journal of Ethnopharmacology, 82(1), 97–103.

Guides techniques INIBAP8. (n.d.). Réseau international pour l’amélioration de la banane et de la banane plantain, Montpellier, France.

Hadj, M. A. (2012). Contribution to the in vitro study of the effect of Retama raetam leaf extracts on α-amylase activity. Postgraduate thesis, Abou Bekr Belkaid University-Tlemcen, Algeria.

Hammiche, V., & Maiza, K. (2006). Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. Journal of Ethnopharmacology, 105(2), 358–367.

Hamza, N. (2011). Preventive and curative effects of three medicinal plants used in the Wilaya of Constantine for the treatment of experimental type 2 diabetes induced by the "high fat" diet in C57BL/6J mice. PhD thesis, Mentouri University of Constantine, Algeria.

Handaji, N., Arsalane, N., Lamarti, A., Dambier, D., Benyahia, H., Miaghizo, H., Cheikh, O. Y., & Ollitrault, P. (2005). Induction de l’embryogenèse somatique et régénération des plantules chez les mandariniers (Citrus reticulata L). El Awamia, 114(2), 109–118.

Hmamouchi, M. (1999). Moroccan medicinal and aromatic plants. Ed CNCPRST.

International Diabetes Federation (IDF). (2013). IDF Diabetes Atlas. ISBN: 2-930229-80-2.

International Diabetes Federation (IDF). (2017). IDF Diabetes Atlas. ISBN: 978-2-930229-87-4.

Kang, K. A., Chae, S., Koh, Y. S., & et al. (2005). Protective effect of Puerariae radix on oxidative stress induced by hydrogen peroxide and streptozotocin. Biological & Pharmaceutical Bulletin, 28(6), 1154–1160.

Kasprzyk-Pawelec, A., Pietrusiewicz, J., & Szczuka, E. (2015). In vitro regeneration induced in leaf explants of Citrus limon L. Burm cv. ‘Primofiore’. Acta Scientiarum Polonorum Hortorum Cultus, 14(4), 143–153.

Kolli, N., & Zatout, R. (2015). Production of alpha amylase by some fungal strains on different substrates. Master’s thesis, Université des Frères Mentouri Constantine, Algeria.

Lachachi, S. (2010). Organogenesis and direct embryogenesis in tomato. Master’s thesis, University of Oran, Algeria.

Latham, P., Konda Ku Mbuta, A., Lejoly, J., Ndjele, M.-B., & Geerinck, D. (2010). Catalogue-flore of vascular plants of the districts of Kisangani and Tshopo (DRC) (4th ed.). DJP de Blaay.

Lima, C. C., Lemos, R. P. L., & Conserva, L. M. (2014). Dilleniaceae family: An overview of its ethnomedicinal uses, biological and phytochemical profile. Journal of Pharmacognosy and Phytochemistry, 3(2), 181–204.

Mathew, J., & Georg, V. (2006). Bioactive compounds from Acrotrema arnottianum. Asian Journal of Chemistry, 18(4), 2747–2755.

Mbodj, N. A. (2003). Study of the antidiabetic activity of acetonic, methanolic, and hexanic extracts of Veronia colorata (Wildd/Drake) compounds in Wistar rats. PhD thesis, Cheikh Anta Diop University, Senegal.

Milongo Dipa, G. Classification and dramatic epidemic of diabetes mellitus in Kinshasa Hinterland: The prominent role of type 2 diabetes and lifestyle changes among Africans. NJM.

Motta, M., Bennati, E., Ferlito, L., Passamonte, M., & Malaguarnera, M. (2007). Value and significance of new diagnostic criteria of diabetes mellitus in older people. Archives of Gerontology and Geriatrics, 45(1), 103–108.

Muanyishay Lukanda, C. (2018). Phytochemical study, bioactivity evaluation, and in vitro culture of Tetracera rosiflora Gilg. Master’s thesis, University of Kinshasa.

Nojima, H., Kimura, I., Chen, F. J., & et al. (1998). Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Mours bombycis, Aglaonema trenbii, and Castanospermum australe in streptozotocin-diabetic mice. Journal of Natural Products, 61(4), 397–400.

Norhafizoh, A. S., Che, P. O., Nor, H. I., Zaini, Y., & Yuswanie, Md Y. (2019). Screening of medicinal plants from Taman Herba Perlis for acetylcholinesterase inhibitory activity. Science Letters, 13(1), 23–32.

Ouchfoun, M. (2010). Validation of the anti-diabetic effects of Rhododendron groenlandicum, a medicinal plant from James Bay Cree, in the in vitro and in vivo model. Elucidation of the mechanisms of action and identification of active compounds. Master’s thesis, University of Montreal, Canada.

Priyanka, S., Singh, B. K., Singh, S. P., & Minakshi, P. (2018). Micropropagation of Kinnow mandarin using nodal segments as explants. Journal of Pharmacognosy and Phytochemistry, 7(4), 2224–2226.

Puri, D. (2001). The insulinotropic activity of a Nepalese medicinal plant Biophytum sensitivum: Preliminary experimental study. Journal of Ethnopharmacology, 78(1), 89–93.

Saliba, S. (2015). New biotechnological approaches for obtaining alkaloids: In vitro culture of Leucojum aestivum L. and isolation of bacterial endophytes from Amaryllidaceae. PhD thesis, University of Lorraine, France.

Sandberg, F., & Michel, K. H. (1962). Phytochemische Studien Über die Flora Agyptens.6. Über die Saponine und Prosapogenine Von Anabasis articulata. Lloydia, 25(2), 142.

Sandberg, F., & Shalaby, A. F. (1960). Phytochemical studies on the flora of Egypt. IV. The saponins of Anabasis articulata (Forsk). Sven Farm Tidskr, 64(4), 677–690.

Schlienger, J.-L. (2014). Diabetes and phytotherapy: The facts. Medicine of Metabolic Diseases, 8(1), 101–106.

Segal, R., Goldzweig-Milo, I., & Zaitschek, D. V. (1969). The sapogenin content of Anabasis articulata. Phytochemistry, 8(4), 521.

Shilin, L. (2016). In vivo and in vitro studies on the nephroprotective potential of anti-diabetic medicinal plants from the traditional pharmacopoeia of the James Bay Cree. PhD thesis, University of Montreal, Canada.

Singh, B. S., Saprem, R., Goli, V. G., & Nagpal, A. (2009). In vitro flowering in embryogenic cultures of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora). African Journal of Biotechnology, 5(16), 5.

Strosse, H., Domergue, R., Panis, B., Escalant, J. V., & Côte, F. (2003). Suspensions cellulaires embryogènes de bananiers et bananiers plantain. In A. Vézina & C. Picq (Eds.).

Sudha, P., Zinjarde, S., Bhargava, S., & Ravi Kumar, A. (2011). Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complementary and Alternative Medicine, 11(5), 1–10.

Thomas, C. C., & Philipson, L. H. (2015). Update on diabetes classification. Medical Clinics of North America, 99(1), 1–16.

Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycemic potential in the treatment of diabetes: An update. Mini-Reviews in Medicinal Chemistry, 10(4), 315–331.

Vu, T. D. (2008). Effects of the environment on the growth and accumulation of secondary metabolites in Datura innoxia Mill. grown in soilless conditions; Impact of biotic and abiotic factors. PhD thesis, University of Lorraine, France.

Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311–321.

World Health Organization (WHO). (2016). Global Diabetes Report. ISBN 978 92 4 256525 6.

Zerriouh, M. (2015). Contribution to the phytochemical study and antidiabetic activity of Hammada scoparia (Pomel), "Remth". PhD thesis, Abou Bekr Belkaid University-Tlemcen, Algeria.

Ziane, N. (2014). Contribution to the study of the hypoglycemic activity of Pistacia atlantica Desf extracts from the national reserve of El-Mergueb (M'sila), Algeria. Master’s thesis, Ferhat Abbas University Sétif 1, Algeria.

Ziyyat, A., Legssyer, H., Mekhfi, H., & et al. (1997). Phytotherapy of hypertension and diabetes in oriental Morocco. Journal of Ethnopharmacology, 58(1), 45–54.

Zoubiri, L. (2012). Production of alpha-amylase by moulds grown on date waste medium. Master’s thesis, Mentouri-Constantine University, Algeria.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.