Orapuh Journal | Journal of Oral & Public Health
The role of gut microbiota alteration in rats fed a diabetogenic diet on the development of type 2 diabetes
PDF (English)

Comment citer

Kuabayina, A. I., Amogu, J.-J. D., Diazuangani, D., Makwela, L. N., Katunda, R. M., & Kabena, O. N. (2024). The role of gut microbiota alteration in rats fed a diabetogenic diet on the development of type 2 diabetes. Orapuh Journal, 5(7), e1162. https://doi.org/10.4314/orapj.v5i7.62

Résumé

Introduction

Diabetes is a chronic metabolic disorder characterized by hyperglycemia, marked dyslipidemia, and pancreatic β-cell dysfunction. Despite numerous management measures for type 2 diabetes mellitus (T2DM), its incidence is not decreasing.

Objective

This study aimed to investigate the effects of gut dysbiosis induced by amoxicillin and a gut microbiota maintained by plant fiber on the prevention of T2DM development.

Methods

Sixteen Wistar rats purchased from INRB were subdivided into four groups. The intestinal microbiota of group 2 (G2) was altered by amoxicillin (AX), while that of group 4 (G4) was maintained by plant fibers. Intestinal dysbiosis was assessed using PCA culture and surface colony count. Glycemia and weight were assessed weekly, and insulin sensitivity was measured using the hyperglycemic glucose tolerance test (HGPO) after 8 weeks.

Results

AX reduced the baseline bacterial concentration by 99.99% (p = 0.039) after 2 weeks of treatment, but its action did not differ between males and females (p = 0.28). Weight gain did not differ between groups for either males (p = 0.24) or females (p = 0.50). Similarly, blood glucose levels did not differ between males (p = 0.87) and females (p = 0.06) in any of the groups. However, intestinal dysbiosis reduced the risk of diabetes in males of the G2 group but increased it in females of the same group. Conversely, the risk of T2DM was significantly reduced in both males and females in the G4 group.

Conclusion

Intestinal dysbiosis delays the onset of T2DM in males but increases the risk in females, while a well-maintained intestinal microbiota delays its onset in both sexes.

https://doi.org/10.4314/orapj.v5i7.62
PDF (English)

Références

Akinlade, O. M., Owoyele, B. V., & Soladoye, A. O. (2021). Streptozotocin-induced type 1 and 2 diabetic cardiac anatomic neuropathy. African Health Science, 21(2), 719–727. https://doi.org/10.4314/ahs.v21i.30

Brockman, N. K., & Yardley, J. E. (2018). Sex-related differences in fuel utilization and hormonal response to exercise: Implications for individuals with type 1 diabetes. Applied Physiology, Nutrition, and Metabolism, 43(6). https://doi.org/10.1139/apnm-2017-0559

Burchfield, J. G., Kebede, M. A., Meoli, C. C., Stöckli, J., Whitworth, P. T., Wright, A. L., Hoffman, N. J., Minard, A. V., et al. (2018). High dietary fat and sucrose result in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. JBC, 293(15), 5731–5745. https://doi.org/10.1074/jbc.RA117.000808

Cao, B., Li, R., Tian, H., Ma, Y., Hu, X., Jia, N., & Wang, Y. (2017). Effect on glycemia in rats with type 2 diabetes induced by streptozotocin: Low-frequency electro-pulse needling stimulated Weiwanxiashu (EX-B3) and Zusanli (ST-36). Journal of Traditional Chinese Medicine, 36(6), 768–778. https://doi.org/10.1016/S0254-6272(17)30013-4

Federation Internationale du Diabète (FID). (2019). Atlas du diabète de la FID, 9ème édition.

Fu, C., Ni, J., Huang, R., Gao, Y., Li, S., Li, Y., Li, J., Zhang, K., & Zhang, P. (2023). Sex-differentiated effects of antibiotic and probiotic treatment on intestinal microbiota composition in chemically induced liver injury in rats. Genomics, 115(4), 110647. https://doi.org/10.1016/j.ygeno.2023.110647

Ge, X., Ding, C., Zhao, W., Xu, L., Tian, H., Gong, J., Zhu, M., Li, J., & Li, N. (2017). Antibiotic-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. Journal of Translational Medicine, 15(13). https://doi.org/10.1186/s12967-016-1105-4

Ghoshal, U. C., & Ghoshal, U. (2017). Small intestinal bacterial overgrowth and other intestinal disorders. Gastroenterology Clinics of North America, 46(1), 103–120. https://doi.org/10.1016/j.gtc.2016.09.008

Guo, X.-X., Wang, Y., Wang, K., Ji, B.-P., & Zhou, F. (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University Science B, 19, 559–569. https://doi.org/10.1631/jzus.B1700254

Ji, J., Zhang, C., Luo, X., Wang, L., Zang, R., Wang, Z., Fan, D. D., Yang, H., & Deng, J. (2015). Effect of stay-green wheat, a novel variety of wheat in China, on glucose and lipid metabolism in high-fat diet-induced type 2 diabetic rats. Nutrients, 7(7), 5143–5155. https://doi.org/10.3390/nu7075143

Kamgang, R., Youmbi, R. M., N’dillé, G. P. R. M., & Ngogang, J. Y. (2006). Réactivité glycémique et évolution pondérale des rats soumis à des diètes locales hypercaloriques. Journal of Cameroon Academy of Science, 6(3).

Khalili, L., Alipour, B., Jafar-Abadi, M. A., Feraji, I., Hassanalilou, T., Abbasi, M. M., Vaghef-Mahrabany, E., & Sani, M. A. (2019). The effects of Lactobacillus casei on glycemic response, serum sirtuin 1, and fetuin A levels in patients with type 2 diabetes mellitus: A randomized controlled trial. IBJ, 23(1), 68–77. https://doi.org/10.29259/.23.1.68

Knauf, C. (2022). Implication du microbiote dans le dialogue entre l'intestin et le cerveau dans le diabète de type 2. Médecine des Maladies Métaboliques, 16(2), 141–147. https://doi.org/10.1016/j.mmm.2022.01.007

Lecerf, J.-M., & Cani, P. D. (2022). Nutrition et microbiote dans le diabète de type 2: De la symbiose à la dysfonction métabolique. Médecine des Maladies Métaboliques, 16(2), 114–120. https://doi.org/10.1016/j.mmm.2022.01.002

Makki, K., Dechan, E. C., Walter, J., & Bäckhed, F. (2018). Impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe, 23(6), 705–710. https://doi.org/10.1016/j.chom.2018.05.012

Mariani-Kurkdjian, P., Bonacorsi, S., & Bingen, E. (2016). Diagnostic bactériologique des infections gastro-intestinales. Bactériologie Médicale, 149–161. https://doi.org/10.1016/B978-2-294-74616-1.00015-7

Melo, B. F., Sacramento, J. F., Ribeiro, M. J., et al. (2019). Evaluation of the impact of different hypercaloric diets on weight gain, insulin resistance, and glucose intolerance in rats. Nutrients, 11, 1197. https://doi.org/10.3390/nu11061197

Monnier, L., & Schlienger, J.-L. (2018). Nutrition manual for diabetic patients: Intestinal flora and diabetes, the concept of dysbiosis and its role in type 2 diabetes (pp. 359–364). Elsevier Masson SAS.

Ojo, O., Freng, Q.-Q., Ojo, O. O., & Wang, X.-H. (2020). The role of dietary fiber in modulating gut microbiota dysbiosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 12(11), 3239. https://doi.org/10.3390/nu12113239

Piravi, F., Mingione, A., Brasacchio, C., & Soldati, L. (2018). Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients, 11(8), 1837. https://doi.org/10.3390/nu11081837

Razmpoosh, E., Javadi, A., Ejtahed, H. S., et al. (2019). Effects of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomised placebo-controlled trial. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(1), 175–182. https://doi.org/10.1016/j.dsx.2018.08.008

Russo, G. T., Manicardi, V., Rossi, M. C., Orsi, E., & Soleni, A. (2022). Sex and gender differences in long-term complications of diabetes mellitus in Italy. Nutrition, Metabolism, and Cardiovascular Diseases, 32(10), 2297–2309. https://doi.org/10.1016/j.numecd.2022.08.011

Saeedi, P., Peterson, I., Salpea, P., et al. (2019). Global and regional diabetes prevalence estimates for 2019. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843

Schlienger, J.-L. (2019). Diabétologie : dysbiose intestinale et maladie métabolique. Elsevier Masson SAS, 353–359.

Silva, E. N., Martins, V. V. F., Miyauchi-Travares, T. M., Miranda, B. A. E., de Assis dos Santos, G., Rosa, C. P., Santos, J. A., Novaes, R. D., de Almeida, A. L., & Corsetti, P. P. (2020). Amoxicillin-induced gut dysbiosis influences estrous cycle in mice and cytokine expression in ovary and caecum. American Journal of Reproductive Immunology, 84(1), e13247. https://doi.org/10.1111/aji.13247.

Tao, Y.-W., Gu, Y.-L., Mao, X.-Q., Zhang, L., & Pei, Y.-F. (2020). Effect of probiotics on type 2 diabetes mellitus: A meta-analysis. Journal of Translational Medicine, 18, 30. https://doi.org/10.1186/s12967-020-02213-2.

Yang, J., Wei, H., Zhou, Y., Szeto, C.-H., Li, C., Coker, O. O., Lau, H. C. H., Chan, A. W. H., Sung, J. J. Y., & Yu, J. (2022). High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology, 162(1), 135–149. https://doi.org/10.1053/j.gastro.2021.08.041.

Yu, M., Jia, H.-M., Zhou, C., Yang, Y., Sun, L.-L., & Zou, Z.-M. (2017). Urinary and fecal metabonomic study of protective Chaihu-Shu-Gan-San on antibiotic-induced gut microbiota dysbiosis in rats. Scientific Reports, 7, 46551. https://doi.org/10.1038/srep46551.

Zhang, Q.-L., Wang, Y., Lui, J.-S., & Du, Y.-Z. (2022). Effects of hypercaloric diet-induced hyperinsulinemia and hyperlipidemia on ovarian follicular development in mice. Journal of Reproduction and Development, 68, 173–180. https://doi.org/10.1262/jrd.2021-132.

Zhan-Zho, Z., Lei-Lei, X., Ji-Han, X., Shun-Lin, Y., Yao-Xing, C., & Kui, L. (2015). Long-term high-fat, high-sucrose diet promotes enlarged islets and β-cell damage by oxidative stress in Bama Minipigs' pancreas. IMPA, 44(6), 888–895. https://doi.org/10.1097/IMPA0000000000000000349.

Creative Commons License

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.