Orapuh Journal | Journal of Oral & Public Health
Antidiabetic and biological effects of hydro-methanolic extracts from Dioscorea alata L and D. rotundata Poir (Dioscoreaceae) tubers in alloxanized guinea pigs
PDF (English)

Comment citer

Mputu, R. L., Musuyu, D. M., Iteku, J. B., Kabena, O. N., & Ngbolua, J.-P. K.-T.-N. (2024). Antidiabetic and biological effects of hydro-methanolic extracts from Dioscorea alata L and D. rotundata Poir (Dioscoreaceae) tubers in alloxanized guinea pigs. Orapuh Journal, 5(4), e1140. https://doi.org/10.4314/orapj.v5i4.40

Résumé

Introduction

The use of medicinal plants is common in healthcare systems globally, often involving the therapeutic use of food plants, especially in areas where traditional medicine is integral to healthcare.

Purpose

This study aims to evaluate the antidiabetic, hypolipidemic, and biological effects of Dioscorea alata and D. rotundata on liver enzyme activity and kidney function, with potential applications for diabetes management in resource-limited settings.

Methods

Forty guinea pigs were induced with diabetes using alloxan monohydrate and divided into eight groups. Four groups were treated with hydro-methanolic extracts of Dioscorea alata and D. rotundata tubers at different doses for 21 days. A negative control group received distilled water, while diabetic control groups were given a water placebo. Two diabetic groups were treated with standard anti-diabetic drugs: slow insulin and glibenclamide. Data analysis included various statistical tests, such as Student's t-test, ANOVA, and Kruskal-Wallis, with significance set at p < 0.05.

Results

Dioscorea rotundata at 400 mg/kg was most effective, significantly reducing blood glucose levels by 59.46% to 122.8 mg/dL, compared to a 24.12% increase in the diabetic control group (413.5 mg/dL). This extract also improved lipid profiles, lowering triglycerides by 42.41% to 139.76 mg/dL, total cholesterol by 39.94% to 101.52 mg/dL, and LDL-cholesterol by 40.93% to 65.02 mg/dL, while increasing HDL-cholesterol by 34.84% to 31.54 mg/dL. Additionally, D. rotundata improved liver and kidney function, reducing ALAT levels by 36.16% to 53.64 IU/L, ASAT levels by 7.45% to 209.44 IU/L, and creatinine by 75.41% to 0.88 mg/dL.

Conclusion

Dioscorearotundata at 400 mg/kg shows the most pronounced beneficial effects in managing diabetes and improving metabolic and organ functions in the studied guinea pigs.

https://doi.org/10.4314/orapj.v5i4.40
PDF (English)

Références

Abdulazeez, M. A., Kassim, I., Kenpia, B., Babvoshia Hope, B., & Abdullahi, Y. (2013). Effect of combined use of Ocimum gratissimum and Vernonia amygdalina extract on the activity of angiotensin converting enzyme, hypolipidemic and antioxidant parameters in streptozotocin-induced diabetic rats. African Journal of Biochemistry Research, 7(9), 165-173. https://doi.org/10.5897/AJBR12.091

Akinyele, K. N., Emma-Okon, B. O., Fajobi, A. O., Morakinyo, A. E., & Oyedapo, O. O. (2021). Studies of the anti-hyperglycemic and antioxidant activities of the extract of aerial yam (Dioscorea bulbifera). Journal of Medicinal Plants Research, 5(10), 503-514.

Belabaci, F. Z., & Belabaci, S. (2019). Étude phytochimique et l’activité antidiabétique de l’Atriplex halimus L. chez les rats Wistar [Master’s thesis, Université Abdelhamid Ibn]. République d’Algérie.

BelHadj, S., Hentati, O., Elfeki, A., & Hamden, K. (2013). Inhibitory activities of Ulva lactuca polysaccharides on digestive enzymes related to diabetes and obesity. Archives of Physiology and Biochemistry, 119(2), 81-87.

Bensmaine, K., & Bougueroua, K. (2019). Effet hypoglycémiant du polysaccharide d’algue verte Ulva lactuca chez les rats Wistar rendus diabétiques par alloxane [Master’s thesis, Université Abdelhamid Ibn]. République d’Algérie.

Bnouham, M., Legssyer, A., Mekhfi, H., & Ziyyat, A. (2002). Medicinal plants used in the treatment of diabetes in Morocco. International Journal of Diabetes and Metabolism, 10(1), 33-50.

Bodin, P. (2017). La lipidose hépatique chez le cochon d’Inde (Cavia porcellus) [Doctoral dissertation, Université Paul-Sabatier de Toulouse].

Bouhouche, I. (2014). Étude comparative de l’alloxane et de la streptozocine dans le diabète expérimental chez le rat blanc : Étude histologique du pancréas endocrine et la variation des paramètres sanguins [Master’s thesis, Université Constantine 1]. République d’Algérie.

Boussarie, D., & Rival, F. (2017). Médecine et chirurgie du cochon d’Inde. Vetnac Editions.

Buisson, M. (2019). Connaissances actuelles en dermatologie du cobaye et illustrations par quelques cas cliniques [Master’s thesis, Université Claude Bernard]. Lyon 1, France.

Bukatuka, F., Ngombe, K., Mutwale, K., Moni, B., Makengo, K., Pambu, L. A., & Mbemba, F. (2016). Bioactivity and nutritional values of some Dioscorea species traditionally used as medicinal foods in Bandundu, DR Congo. European Journal of Medicinal Plants, 14(1), 1-11.

Carper, J. (1990). Les aliments qui guérissent. Les éditions de l’homme.

Daisy, P., Feril, G., & Kani, J. (2012). Evaluation of antidiabetic activity of various extracts of Cassia auriculata Linn. bark on streptozotocin-induced diabetic Wistar rats. International Journal of Pharmacy and Pharmaceutical Sciences, 4(4), 312-318.

Douaouya, L., & Bouzerna, N. (2016). Effect of garlic (Allium sativum) on biochemical parameters and histopathology of pancreas of alloxan-induced diabetic rats. International Journal of Pharmacy and Pharmaceutical Sciences, 8(6), 44-48.

Douaouya, L. (2017). Investigation phytochimique et étude des activités biologiques d’une variété locale de l’Allium sativum L. [Doctoral dissertation, Université Badji Mokhtar – Annaba]. République Algérienne Démocratique et Populaire.

Fina Lubaki, J. P., Omole, O. B., & Francis, J. M. (2022). Protocol: Developing a framework to improve glycaemic control among patients with type 2 diabetes mellitus in Kinshasa, Democratic Republic of the Congo. PLoS One, 17(9), e0268177.

Gebhardt, R., & Beck, H. (1996). Differential inhibitory effects of garlic-derived organosulfur compounds on cholesterol biosynthesis in primary rat hepatocyte cultures. Lipids, 31(12), 1269-1276.

Kerharo, J., & Adam, J. G. (1974). La pharmacopée sénégalaise traditionnelle : plantes médicinales et toxiques. Editions Vigot-frères.

Kleijnen, J., Knipschild, P., & Ter Riet, G. (1989). Garlic, onions and cardiovascular risk factors: A review of the evidence from human experiments with emphasis on commercially available preparations. British Journal of Clinical Pharmacology, 28(5), 535-544.

Lebot, V., Lawac, F., & Legendre, L. (2023). The greater yam (Dioscorea alata L.): A review of its phytochemical content and potential for processed products and biofortification. Journal of Food Composition and Analysis, 115, 104987.

Lemhadri, A., Eddouks, M., Sulpice, T., & Burcelin, R. (2007). Anti-hyperglycaemic and anti-obesity effects of Capparis spinosa and Chamaemelum nobile aqueous extracts in HFD mice. American Journal of Pharmacology and Toxicology, 2(3), 106-110.

Lim, J. S., Hahn, D., Gu, M. J., Oh, J., Lee, J. S., & Kim, J.-S. (2019). Anti-inflammatory and antioxidant effects of 2, 7-dihydroxy-4,6-dimethoxy phenanthrene isolated from Dioscorea batatas Decne. Applied Biological Chemistry, 62, 29.

Loe, G. E., Yinyang, J., Ebongue, C. O., Makondo, B. V., Ngaba, G. P., Mpondo, E. M., & Dibong, S. D. (2017). Étude de la toxicité aigüe et subaigüe de l’extrait au vin des graines de Carica papaya Linn. Journal of Applied Biosciences, 120, 12077-12085.

Lombe, R. M., Kamalandua, B. M., Bekomo, J. I., Ngandu, O. K., & Ngbolua, K. T. N. J. P. (2023). Étude phytochimique et évaluation de l’activité anti-radicalaire de Dioscorea alata L. et D. rotundata Poir (Dioscoreaceae). Journal of Applied Biosciences, 185, 19365-19376.

Medjdoub, H. (2013). Contribution à la recherche d’éventuelles activités biologiques de Zygophyllum geslini Coss. [Doctoral dissertation, Université Abou Bekr Belkaid]. République d’Algérie.

Moraldi, T. (2018). Les intoxications végétales chez le cobaye (Cavia porcellus) [Doctoral dissertation, École nationale vétérinaire de Toulouse].

Nnanga Nga, E., Ngolsou, F., Nyangono Ndongo, M., Soppo Lobe, V., Betoté, D. P. H., Benga Mekoulou, C., & Minkande, Z. (2020). Étude toxicologique in vivo de l’extrait aqueux des feuilles de Psychotria calceata. Health Sciences and Disease, 21(10), 44-48.

Obidiegwu, J. E., Lyons, J. B., & Chilaka, C. A. (2020). The Dioscorea genus (Yam)—An appraisal of nutritional and therapeutic potentials. Foods, 9(9), 1304.

Onsiyor, E. J. B., Akaffou, N. A., Zahoui, O. S., & Traoré, F. (2019). Effets antidiabétiques de l’extrait aqueux d’Ageratum conyzoïdes (Asteraceae) chez les rats rendus diabétiques par pancréatectomie partielle et évaluation de leurs paramètres hématologiques. International Journal of Biological and Chemical Sciences, 13(3), 1621-1628.

Parasuraman, S., Ching, T. H., Leong, C. H., & Banik, U. (2019). Antidiabetic and antihyperlipidemic effects of a methanolic extract of Mimosa pudica (Fabaceae) in diabetic rats. Egyptian Journal of Basic and Applied Sciences, 6(1), 137-148.

Pariente, A. (2009). Stéatopathie métabolique : prise en charge. Gastroentérologie Clinique et Biologique, 33(5), 413-424.

Rodrigues Oliveira, S. M., Rebocho, A., Ahmadpour, E., Nissapatorn, V., & de Lourdes Pereira, M. (2023). Type 1 diabetes mellitus: A review on advances and challenges in creating insulin producing devices. Micromachines, 14(1), 151. https://doi.org/10.3390/mi14010151

Sahli, S., & Saidi, F. (2016). Etude de la toxicité subaigüe et de l’activité antidiabétique des calystégines de Hyoscyamus albus. Mémoire de Master, Université Abderrahmane Mira de Bejaia, République d’Algérie.

Saravanan, R., & Pari, L. (2005). Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation, in alloxan-induced hyperglycemic rats. BMC Complementary and Alternative Medicine, 5(1), 1-8.

Shi, J., Li, R., Liu, Y., Lu, H., Yu, L., & Zhang, F. (2019). Shuangyu Tiaozhi Granule attenuates hypercholesterolemia through the reduction of cholesterol synthesis in rats fed a high cholesterol diet. BioMed Research International, 2019, 4805926. https://doi.org/10.1155/2019/4805926

Shirwaikar, A., Rajendran, K., Kumar, C. D., & Bodla, R. (2004). Antidiabetic activity of aqueous leaf extract of Annona squamosa in streptozotocin–nicotinamide type 2 diabetic rats. Journal of Ethnopharmacology, 91(1), 171-175.

Takei, S., Nagashima, S., Takei, A., Yamamuro, D., Wakabayashi, T., Murakami, A., & Ishibashi, S. (2020). β-cell–specific deletion of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase causes overt diabetes due to reduction of β-cell mass and impaired insulin secretion. Diabetes, 69(11), 2352-2363.

Vats, V., Yadav, S. P., & Grover, J. K. (2004). Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. Journal of Ethnopharmacology, 90(1), 155-160.

Zerriouh, M. (2015). Contribution à l’étude phytochimique et activité antidiabétique de Hammada scoparia (Pomel), « Remth ». Thèse de Doctorat en Biologie, Université Abou Bekr Belkaid, République d’Algérie.

Zhen, W., Shengnan, Z., Siyu, T., Hou, G., Zhao, F., Tan, S., & Meng, Q. (2023). Dioscorea spp.: Bioactive compounds and potential for the treatment of inflammatory and metabolic diseases. https://doi.org/10.3390/molecules28062878

Creative Commons License

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.