Résumé
Introduction
Mycotoxins are harmful contaminants for human and animal health; their presence also impacts crop production and economies worldwide. They are frequently present in various African staple foods.
Purpose
In this study, a multi-mycotoxin analysis approach was implemented to reveal mycotoxin contamination of important staple foods in Kinshasa (Democratic Republic of the Congo).
Methods
A multi-mycotoxin analysis approach based on liquid chromatography tandem mass spectrometry (LC-MS/MS) with electrospray interface operated in positive mode (ESI+) and quadrupole mass analyzer was used. Twenty-five mycotoxins were investigated in 18 samples of staple foods collected in different markets in Kinshasa city, including maize flour (n=8), cassava flour (n=5), and peanut paste (n=5).
Results
Twenty mycotoxins were present in these samples at quantifiable levels. The maize flour samples were the most contaminated with aflatoxin B1 (AFB1) (87.5%), total aflatoxin (AFT) (100%), fumonisin B1 (FB1) (87.5%), deoxynivalenol (DON) (75%), and nivalenol (NIV) (75%). Emerging mycotoxins such as beauvericin (BEA), enniatin B (ENN B), alternariol (AOH), and alternariol mono-methyl ether (AME) were more frequent in maize flour. The study found that 25% of maize flour and 20% of peanut paste samples exceeded the European Commission’s regulatory limits for aflatoxin B1 (AFB1) and total aflatoxins (AFT). Additionally, ochratoxin A (OTA) was detected in one maize sample at a concentration above the regulatory limit. This could expose consumers to their genotoxic, teratogenic, and immunosuppressive effects. As for OTA, there are fears of its harmful effects, including nephrotoxicity and mutagenicity. The aflatoxin/fumonisin (AF/F) combination was more frequently observed (50% of all samples) than AF/DON, DON/F, and AF/OTA combinations.
Conclusion
Data from this exploratory study highlight a possible health risk for the population of Kinshasa through the consumption of maize flour, as well as the need for continuous monitoring of mycotoxins in this staple food that is increasingly being consumed across the Democratic Republic of the Congo.
Références
Abass, A. B., Awoyale, W., Sulyok, M., & Alamu, E. O. (2017). Occurrence of Regulated Mycotoxins and Other Microbial Metabolites in Dried Cassava Products from Nigeria. Toxins, 9(7), 207. https://doi.org/10.3390/toxins9070207
Agriopoulou, S., Stamatelopoulou, E., & Varzakas, T. (2020). Advances in Occurrence, Importance, and Mycotoxin Control Strategies : Prevention and Detoxification in Foods. Foods, 9(2), 137. https://doi.org/10.3390/foods9020137
Ahlberg, S. H., Joutsjoki, V., & Korhonen, H. J. (2015). Potential of lactic acid bacteria in aflatoxin risk mitigation. International Journal of Food Microbiology, 207, 87‑102. https://doi.org/10.1016/j.ijfoodmicro.2015.04.042
Alassane-Kpembi, I., Schatzmayr, G., Taranu, I., Marin, D., Puel, O., & Oswald, I. P. (2017). Mycotoxins co-contamination : Methodological aspects and biological relevance of combined toxicity studies. Critical Reviews in Food Science and Nutrition, 57(16), 3489‑3507. https://doi.org/10.1080/10408398.2016.1140632
BIOMIN Mycotoxin Survey Q3 2021 Results. (s. d.). Biomin. https://www.biomin.net/science-hub/biomin-mycotoxin-survey-q3-2021-results/. Accessed 20 August 2023
Chilaka, C. A., De Boevre, M., Atanda, O. O., & De Saeger, S. (2017). The Status of Fusarium Mycotoxins in Sub-Saharan Africa : A Review of Emerging Trends and Post-Harvest Mitigation Strategies towards Food Control. Toxins, 9(1), 19. https://doi.org/10.3390/toxins9010019
Chilaka, C. A., Obidiegwu, J. E., Chilaka, A. C., Atanda, O. O., & Mally, A. (2022). Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts. Toxins, 14, 442. https://doi.org/10.3390/toxins14070442
Chiona, M., Ntawuruhunga, P., Benesi, I. R. M., Matumba, L., & Moyo, C. C. (2014). Aflatoxins contamination in processed cassava in Malawi and Zambia. African Journal of Food, Agriculture, Nutrition and Development, 14(3), 8809-8820. https://doi.org/10.4314/ajfand.v14i3
Crudo, F., Varga, E., Aichinger, G., Galaverna, G., Marko, D., Dall’Asta, C., & Dellafiora, L. (2019). Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and Other Xenobiotics of Food Origin : Current Scenario and Future Perspectives. Toxins, 11(11), 640. https://doi.org/10.3390/toxins11110640
Dellafiora, L., Ruotolo, R., Perotti, A., Cirlini, M., Galaverna, G., Cozzini, P., Buschini, A., & Dall’Asta, C. (2017). Molecular insights on xenoestrogenic potential of zearalenone-14-glucoside through a mixed in vitro/in silico approach. Food and Chemical Toxicology, 108, 257‑266. https://doi.org/10.1016/j.fct.2017.07.062
Dieme, E., Fall, R., Sarr, I., Sarr, F., Traore, D., & Seydi, M. (2016). Contamination des céréales par l’aflatoxine en Afrique : revue des méthodes de lutte existantes. Int. J. Biol. Chem. Sci. 10(5),2285-2299. https://ajol.info/index.php/ijbcsDRC (Democratic Republic of the Congo),
Ministry of Agriculture (2018). Sécurité alimentaire, niveau de production agricole et Animale, Évaluation de la Campagne Agricole 2017-2018 et Bilan Alimentaire du Pays (Rapport Août 2018) (Report of the 2017-2018 agricultural campaign). https://reliefweb.int/report/democratic-republic-congo/s-curit-alimentaire-niveau-de-production-agricole-et-animale. Accessed 16 July 2023DRC (Democratic Republic of the Congo),
Ministry of Agriculture (2020). Évaluation de la Campagne Agricole, Impact des Maladies Zoo-phytosanitaires, Sécurité Alimentaire et nutritionnelle 2018-2019 (Report of the 2018-2019 agricultural campaign). https://reliefweb.int/report/democratic-republic-congo/valuation-de-la-campagne-agricole-impact-des-maladies-zoo. Accessed 16 July 2023
EC (European Commission). (2013). Commission recommendation 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Official Journal of European Union, 91, 12–15. https://data.europa.eu/eli/reco/2013/165/oj. Accessed 21 April 2024
EC (European Commission). (2023). Commission regulation (EC) N° 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) N°1881/2006. Official Journal of European Union, 119, 103–157. http://data.europa.eu/eli/reg/2023/915/oj. Accessed 20 September 2023
Ediage, E. N., Di Mavungu, J. D., Monbaliu, S., Van Peteghem, C., & De Saeger, S. (2011). A validated multianalyte LC-MS/MS method for quantification of 25 mycotoxins in cassava flour, peanut cake and maize samples. Journal of Agricultural and Food Chemistry, 59(10), 5173‑5180. https://doi.org/10.1021/jf2009364
EFSA (European Food Safety Authority) Panel on Contaminants in the Food Chain. (2014). Scientific Opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J 3802, 1–174. https://www.efsa.europa.eu/de/efsajournal/pub/3802. Accessed 29 August 2023
Ekwomadu, T. I., Dada, T. A., Nleya, N., Gopane, R., Sulyok, M., & Mwanza, M. (2020). Variation of Fusarium Free, Masked, and Emerging Mycotoxin Metabolites in Maize from Agriculture Regions of South Africa. Toxins, 12(3), 149. https://doi.org/10.3390/toxins12030149
Ekwomadu, T. I., Dada, T. A., Akinola, S. A., Nleya, N., Mwanza, M. (2021). Analysis of Selected Mycotoxins in Maize from North-West South Africa Using High Performance Liquid Chromatography (HPLC) and Other Analytical Techniques. Separations, 8, 143. https://doi.org/10.3390/separations8090143
Eskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., & Krska, R. (2020). Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 60(16), 2773–2789. https://doi.org/10.1080/10408398.2019.1658570
Gbashi, S., Madala, N., Adebo, O., Piater, L., & Njobeh, P. (2017). Subcritical Water Extraction and Its Prospects for Aflatoxins Extraction in Biological Materials. In: Lukman Bola Abdulra'uf (ed) Aflatoxin - Control, Analysis, Detection and Health Risks, Kwara State University, Nigeria, 229‑250. https://doi.org/10.5772/intechopen.68706
Gbashi, S., Madala, N., De Saeger, S., De Boevre, M., Adekoya, I., Adebo, O. A., & Njobeh, P. B. (2018). The Socio-Economic Impact of mycotoxin Contamination in Africa. In: in Tech (ed) Fungi and Mycotoxins - Their Occurrence, Impact on Health and the Economy as well as Pre- and Postharvest. DOI :10.5772/intechopen.79328
Groopman, J. D., Smith, J. W., Rivera-Andrade, A., Alvarez, C. S., Kroker-Lobos, M. F., Egner, P. A., Gharzouzi, E., Dean, M., McGlynn, K. A., & Ramírez-Zea, M. (2021). Aflatoxin and the Etiology of Liver Cancer and Its Implications for Guatemala. World mycotoxin journal, 14(3), 305‑317. https://doi.org/10.3920/wmj2020.2641
Gruber-Dorninger, C., Novak, B., Nagl, V., & Berthiller, F. (2017). Emerging Mycotoxins : Beyond Traditionally Determined Food Contaminants. Journal of Agricultural and Food Chemistry, 65(33), 7052‑7070. https://doi.org/10.1021/acs.jafc.6b03413
Hamid, A. S., Tesfamariam, I. G., Zhang, Y., & Zhang, Z. G. (2013). Aflatoxin B1-induced hepatocellular carcinoma in developing countries : Geographical distribution, mechanism of action and prevention. Oncology Letters, 5(4), 1087‑1092. https://doi.org/10.3892/ol.2013.1169
Hanvi, D. M., Lawson-Evi, P., De Boevre, M., Goto, C. E., De Saeger, S., & Eklu-Gadegbeku, K. (2019). Natural occurrence of mycotoxins in maize and sorghum in Togo. Mycotoxin Research, 35(4), 321‑327. https://doi.org/10.1007/s12550-019-00351-1
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 82, 1‑556. https://monographs.iarc.who.int/monographs-available/. Accessed 15 September 2023
Ilunga, C. C., Tshiombe, M. V. E., Bulubulu, O. F., Nyembo, K. B., Muambi, N. J. L., Mukendi, M. J., Muya, I. M., Mbuyi, M. C., & Makun, A. H. (2022). Les Mycotoxines dans les Aliments Consommés à Kinshasa, République Démocratique du Congo (RDC). Journal en ligne de l’ACASTI et du CEDESURK, 10(1). https://www.congosciences.cd
Kępińska-Pacelik, J., & Biel, W. (2021). Alimentary Risk of Mycotoxins for Humans and Animals. Toxins, 13, 822. https://doi.org/10.3390/toxins13110822
Kamika, I., Mngqawa, P., Rheeder, J. P., Teffo, S. L., & Katerere, D. R. (2014). Mycological and aflatoxin contamination of peanuts sold at markets in Kinshasa, Democratic Republic of Congo, and Pretoria, South Africa. Food Additives & Contaminants. Part B 7(2), 120‑126. https://doi.org/10.1080/19393210.2013.858187
Kamika, I., Ngbolua, K.-N., & Tekere, M. (2016). Occurrence of aflatoxin contamination in maize throughout the supply chain in the Democratic Republic of Congo. Food Control, 69, 292‑296. https://doi.org/10.1016/j.foodcont.2016.05.014
Khan, R., Anwar, F., & Ghazali, F. M. (2024). A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e28361
Kosegarten, C., Ramírez-Corona, N., Mani-López, N., Palou, E., & López-Malo, A. (2016). Description of Aspergillus flavus growth under the influence of different factors (water activity, incubation temperature, protein and fat concentration , pH, and cinnamon essential oil concentration) by kinetic, probability of growth, and time-to-detection models. International journal of food Microbiology 240, 115-123. https://doi.org/10.1016/j.ijfoodmicro.2016.04.024
Kouadio, J. H., Lattanzio, V. M. T., Ouattara, D., Kouakou, B., & Visconti, A. (2014). Assessment of Mycotoxin Exposure in Côte d’ivoire (Ivory Coast) Through Multi-Biomarker Analysis and Possible Correlation with Food Consumption Patterns. Toxicology International, 21(3), 248‑257. https://doi.org/10.4103/0971-6580.155336
Manizan, A. L., Oplatowska-Stachowiak, M., Piro-Metayer, I., Campbell, K., Koffi-Nevry, R., Elliott, C., Akaki, D., Montet, D., & Brabet, C. (2018). Multi-mycotoxin determination in rice, maize and peanut products most consumed in Côte d’Ivoire by UHPLC-MS/MS. Food Control, 87, 22‑30. https://doi.org/10.1016/j.foodcont.2017.11.032
Meijer, N., Kleter, G., De Nijs, M., Rau, M., Derkx, R., & VanderFels-Klerx, H. J. (2021). The aflatoxin situation in Africa: Systematic literature review. Compr Rev Food Sci Food Saf, 20:2286–2304. DOI :10.1111/1541-4337.12731
Mellon, J. E., Cotty, P. J., & Dowd, M. K. (2000). Influence of lipids with and without other cottonseed reserve materials on aflatoxin B(1) production by Aspergillus flavus. Journal of Agricultural and Food Chemistry, 48(8), 3611‑3615. https://doi.org/10.1021/jf0000878
Mihalcea, A., & Amariei, S. (2022). Study on Contamination with Some Mycotoxins in Maize and Maize-Derived Foods. Applied Sciences, 12(5), 2579. https://doi.org/10.3390/app12052579
Monbaliu, S., Van Poucke, C., Detavernier, C., Dumoulin, F., Van De Velde, M., Schoeters, E., Van Dyck, S., Averkieva, O., Van Peteghem, C., & De Saeger, S. (2010). Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method. Journal of Agricultural and Food Chemistry, 58(1), 66‑71. https://doi.org/10.1021/jf903859z
Mulunda, F., Dzoma, B., Nyirenda, M., & Bakunzi, F. (2013). Mycotoxins occurrence in selected staple food in main markets from Lubumbashi, Democratic Republic of Congo. Journal of Food, Agriculture and Environment, 11, 51‑54.
Nji, Q. N., Babalola, O. O., & Mwanza, M. (2022). Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity? Toxins, 14, 574. https://doi.org/10.3390/toxins14080574
Nji, Q. N., Babalola, O. O., Ekwomadu, T. I., Nleya, N., & Mwanza, M. (2022). Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins, 14, 318. https://doi.org/10.3390/toxins14050318
Obong’o, B. O., Ayodo, G., Kawaka, F., & Adalla, M. K. (2020). Fungi and Aflatoxin Levels in Traditionally Processed Cassava (Manihot esculenta Crantz) Products in Homa Bay County, Kenya. International Journal of Microbiology, 2020, 3406461. https://doi.org/10.1155/2020/3406461
Ropejko, K., & Twarużek, M. (2021). Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins, 13(1), 35. https://doi.org/10.3390/toxins13010035
Sangare-Tigori, B., Moukha, S., Kouadio, H. J., Betbeder, A.-M., Dano, D. S., & Creppy, E. E. (2006). Co-occurrence of aflatoxin B1, fumonisin B1, ochratoxin A and zearalenone in cereals and peanuts from Côte d’Ivoire. Food Additives and Contaminants, 23(10), 1000‑1007. https://doi.org/10.1080/02652030500415686
Smith, M.-C., Madec, S., Coton, E., & Hymery, N. (2016). Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins, 8(4), 94. https://doi.org/10.3390/toxins8040094
Sulyok, M., Beed, F., Boni, S., Abass, A., Mukunzi, A., & Krska, R. (2015). Quantitation of multiple mycotoxins and cyanogenic glucosides in cassava samples from Tanzania and Rwanda by an LC-MS/MS-based multi-toxin method. Food Additives & Contaminants. Part A, 32(4), 488‑502. https://doi.org/10.1080/19440049.2014.975752
Udomkun, P., Wossen, T., Nabahungu, N. L., Mutegi, C., Vanlauwe, B., & Bandyopadhyay, R. (2018). Incidence and farmers’ knowledge of aflatoxin contamination and control in Eastern Democratic Republic of Congo. Food Science & Nutrition, 6(6), 1607‑1620. https://doi.org/10.1002/fsn3.735
Warth, B., Parich, A., Atehnkeng, J., Bandyopadhyay, R., Schuhmacher, R., Sulyok, M., & Krska, R. (2012). Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique using a modern LC-MS/MS multitoxin method. Journal of Agricultural and Food Chemistry, 60(36), 9352‑9363. https://doi.org/10.1021/jf302003n
Zinedine, A., Soriano, J. M., Moltó, J. C., & Mañes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone : An oestrogenic mycotoxin. Food and Chemical Toxicology, 45(1), 1‑18. https://doi.org/10.1016/j.fct.2006.07.030

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.