Abstract
Introduction
Anaerobic digestion (AD) can be used to produce a more environmentally friendly form of energy from municipal solid waste (MSW) and to clean up urban environments. The application of this technology to MSW produced in Kinshasa city (KC) is highly desirable to alleviate the waste management problem it currently faces and to combat indoor air pollution caused using biomass energy, which causes over 1.1 million deaths in Africa every year. However, the successful implementation of AD technology in Kinshasa City (KC) will depend on the level of anaerobic biodegradability (AB) of its MSW.
Purpose
This work aimed to assess the AB of household organic waste (HOW) produced in large quantities in the KC, namely: leaves and stems of Manihot utilissima (MU), leaves of Mangifera indica (MI), leaves of Persea americana (PA), stems of Amaranthus viridis (AV), stems of Ipomoea batatas (IP) and peels of Musa paradisiaca (MP).
Methods
AB tests were carried out under mesophilic conditions in 750 mL bottles. These bottles were filled with a mixture consisting of 6.7 g, 13.3 g, or 50.0 g DW/L of these waste products (substrates); inoculum, at a substrate/inoculum ratio of 4:1 and water, at a substrate/water ratio of 1:4. After 70 days of AD, the methane yield (BMP) of each substrate was then calculated.
Results
The highest BMP (0.09534 ± 0.00024 m3 CH4/kg.VS) was recorded for stems of AV at a concentration of 13.3 g DW/L, while leaves of PA at a concentration of 50.0 g DW/L gave the lowest BMP (0.00860 ± 0.00023 m3 CH4/kg.VS). Stems of AV stems and leaves of MU, and peels of MP showed good AB, compared with stems of IB and leaves of MI and PA. Co-digestion of these wastes is desirable to further improve their AB and enable the implementation of household-scale AD technology in KC.
Conclusion
The results obtained confirm that this waste could be recycled by AD to produce a clean form of energy for cooking and to clean up the KC.
References
ACCP (African Clean Cities Platform). (2019). Africa Solid Waste Management: Data Book 2019. http://www.gwopa.org/assets/data/JICA_databook_EN_web_ 20191218.pdf.
Adedara M.L., Taiwo R., Bork H.R., 2023. Municipal solid waste collection and coverage rates in Sub-saharan African Countries: A comprehensive systematic review and meta-analysis. Waste(1) 389- 413.
Afilal M.E., Elasri O., Merzak Z. (2014). Organic waste characterization and evaluation of its potential biogas). J. Mater. Environ. Sci. 5 (4) (2014) 1160-1169.
AFNOR (Association Française de Normalisation). (1981). Collection of French Standards Body. Fat and Oïl Seeds Product. 2nd Edition, Association Française de Normalisation, Paris.
Akassou M., Kaanane A., Crolla A., Kinsley C. (2010). Statistical modelling of the impact of some polyphenols on the efficiency of anaerobic digestion and the co-digestion of the wine distillery wastewater with dairy cattle manure and cheese whey. Water Science & Technology 62(3)475-483. https://doi.org/10.2166/wst.2010.235
Angelidaki I., Sanders W. 2004. Assessment of the anaerobic biodegradability of macropollutants. Re/Views in Environmental Science & Bio/Technology, 3, 117-129.
Anuardo R.G., Espuny M., Costa A.C.F., Oliveira O.J., 2022. Toward a cleaner and more sustainable world: A framework to develop and improve waste management through organizations, governments, and academia. Heliyon 8 (2022) e09225.
APHA, AWWA, WPCF, 2005. APHA, Standard Methods for the Examination of Water and Wastewater. American Public Health Association. Am. Public Heal. Assoc. Washingt.
Ashekuzzaman S.M., Poulsen G.T. (2011). Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures, Biores Technol. 102(3):2213-2218.
Ashwell G. (1957). Colorimetric Analysis of Sugar, In: S. P. Colowick and N. O. Kaplan, Eds., Methods in Enzymology, Vol. 3, 1957, pp. 73-105.
Balasundaram G., Banu R., Varjani S., Kazmi A.A., Tyagi V.K. (2022). Recalcitrant compounds formation, their toxicity, and mitigation: Key issues in biomass pretreatment and anaerobic digestion. Chemosphere 291 (2022) 132930.
Black C.A., Evan D.D. (1965). Methods of soil analysis. American Society of Agronomy. Part 2, Agronomy 9: 917-918.
Bogaert J., Colinet G., Mahy G. (2018). Anthropisation des paysages katangais. Gembloux, Belgique : Presses Universitaires de Liege- Agronomie-Gembloux.
Borja B., Alba J., Banks C.J. (1997). Impact of the main phenolic compounds of olive mill wastewater (OMW) on the kinetics of acetoclastic methanogenesis. Process Biochem. 32, 121-133.
Brunton J., 1995. Text Book of Pharmacognosy, Phytochemistry and Medicinal Plants. Intercept Limited. Springer, London.
Cao L., Keener H., Huang Z., Liu Y., Ruan R., Xu F. (2020). Effects of temperature and inoculation ratio on methane production and nutrient solubility of swine manure anaerobic digestion. Bioresoure Technology 299, 122552.
CEAEQ (Centre d’expertise en analyse environnementale du Québec). (2014). Détermination du carbone organique total dans les solides : dosage par titrage, MA.405-C. Revue 1, Ministère du développement durable, de l’Environnement et de la lutte contre les changements climatiques. Québec, Edition courante 15 décembre 2014, p9.
Cerón-Vivas A., Cáceres K.T., Rincón A., Cajigas Á. A. (2019). Influence of pH and the C/N ratio on the biogas production of wastewater. Revista Facultad de Ingeniería, Universidad de Antioquia (92) 88-95. https: //doi.org/10.17533/ udea.redin.20190627
Chandrasekaran M., Krishnapriya P.P., Jeuland M., Pattanayak S.K. (2023). Gender empowerment and energy access: evidence from seven countries. Environmental Research Lettre18(2023)045003
Chang C.C., Yang M.M, Wen H.M., Chern J.C. (2002). Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Journal of Food and Drug Analysis, Vol. 10, No. 3, 2002, Pages 178-182.
Chen C.L., Wu J.H., Liu W.T. (2008). Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res. 42, 1963-1976.
Chen S., Zhang J., Wang X. (2015). Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Management & research 33(11): 1-8.
Dall’Acqua S.; Sinan K.I., Sut S.; Ferrarese I., Etienne O.K., Mahomoodally M.F., Lobine D., Zengin G. (2021). Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L’Hér. Extracts Obtained with Different Solvents. Molecules 2021, 26, 1902.
De Vos B., Lettens S., Muys B., Deckers J.A. (2007). Walkley-Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management. 23(3) 221-229.
Diasolua L.N., Yu-Haey K., Lambein F. (2002). Food safety and amino acid balance in processed cassava ‘cossettes’. Journal of Agricultural and Food Chemistry,50:3042-3049.
Fan Y., Yang X., Lei Z., Adachi Y., Kobayashi M., Zhang Z., Shimizu K. (2021). Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation. Bioresource Technology 326, 124782.
Fernando S.J. and Zutshi A. (2023). Municipal solid waste management in developing economies: A way forward. Cleaner Waste Systems (5) 100103.
Fujishima S., Miyahara T.and Noike T. (2000). Effect of moisture content on anaerobic digestion of dewatered sludge: ammonia inhibition to carbohydrate removal and methane production. Water Science and Technology 41(3) 119-127. © IWA Publishing 2000.
Garcia-Peña E. I., Parameswaran P., Kang D.W., Canul-Chan M., Krajmalnik-Brown R. (2011). Anaerobic digestion and co digestion of vegetable and fruit residues: process and microbial ecology. Bioresour. Technol. 102, 9447–9455.
Gueye F.K., Niang L., Dieng B., Gueye M.F., Ayessou N.C., Mbaye M.S., Noba K. (2022). Phytochemical Screening and Antioxidant Activities of Water Lilies Seeds, Neglected and Underused Species in the Delta and Lower Valley of the Senegal River. American Journal of Plant Sciences, 2022, 13, 756-765.
Gunaseelan V.N. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and Bioenergy 26(4):389-399.
Hakimi M., Manogaran M.D., Shamsuddin R., Johari S.A.M., Hassan M.A.M., Soehartanto T. 2023. Co-anaerobic digestion of sawdust and chicken manure with plant herbs: Biogas generation and kinetic study. Heliyon 9(2023)e17096.
Hakimi M., Shamsuddin R., Pendyala R., Siyal A.A., AlMohamadi A. (2021). Co-anaerobic digestion of chicken manure with the addition of Cymbopogan citratus, Mentha piperita and Citrus sinensis as fly deterrent agents: Biogas production and Kinetic study. Bioresource Technology Reports 15,100748.
HEI (Health Effects Institute). (2022). The State of Air Quality and Health Impacts in Africa. A Report from the State of Global Air Initiative. Boston, MA:Health Effects Institute.
Hiligsmann S., Lardinois M., Diabaté S.I., Thonart P. (2006). Guide pratique sur la gestion des déchets ménagers et des sites d’enfouissement technique dans les pays du sud. IEPF, Québec, Canada.
Hiligsmann S., Masset J., Hamilton C., Beckers L., Thonart P. (2011). Comparative study of biological hydrogen production by pure strains and consortia of facultative and strict anaerobic bacteria. Bioresource Technology 102(4): 3810-3818.
Hussien F., Hamad A., Faraj J. (2021). Impact of Adding Cow Dung with Different Ratios on Anaerobic Co-Digestion of Waste Food for Biogas Production. Journal of Mechanical Engineering Research and Developments 43(7)213-221. doi.org/10.13140/RG.2.2.14821.63209
Imran M., Arshad M.S., Butt M.S., Kwon J-H., Arshad M.U., Sultan M.T. (2017). Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids in Health and Disease 16:84 doi10.1186/s12944-017-0449-y
Induchoodan T.G, Haq I., Kalamdhad A.S. (2022). Factors affecting anaerobic digestion for biogas production : A review. Advanced Organic Waste Management : Sustainable Practices and Approaches. 223-233. https://doi.org/10.1016/B978-0-323-85792-5.00020-4
INS (Institut National de la Statistique). (2017). Annuaire statistique 2015. République democratique du Congo, Ministère du Plan. African Bank of Development. World Bank, 2017. https://ins-rdc.org/sites/defaut/files/annuaire%20statistique%202015%20Web.pdf
Ipona E.N., Mvingu B.K., Mawete T.D., Mbala B.M., Koto-Te-Nyiwa Ngbolua JP., Doudou Batumbo D.B., Bonganga L.T., Kabengele C.N., Inkoto C.L., Taba K. (2023). Screening phytochimique, activités anti-radicalaire et cytotoxique des extraits de quatre plantes utilisées dans la prise en charge de la dysfonction érectile à Mbandaka, République démocratique du Congo. Journal of Applied Biosciences 185: 19504- 19523 ISSN 1997-5902.
Jagun Z.T., Daud D., Ajayi O.M., Salfarina S., Jubril A.J., Rahman M.S.A. (2022). Waste management pratices in developing countries : a socio-economic perspective. Environmental Science and Pollution, Springer.
Joslyn M. (1970). Methods in Food Analysis. 2nd Edition, Academic Press, New York, 109-140.
Kang Y.O., Yabar H., Mizunoya T., Higano Y. (2023). Environmental and economic perfomances of municipal solid waste management strategies based on LCA method: A case study of Kinshasa. Heliyon 9(3):e14372.
Karki R., Chuenchart W., Surendra K.C., Shrestha S., Raskin L., Sung S., Hashimoto A., Kumar Khanal S. (2021). Anaerobic co-digestion: Current status and perspectives. Bioresour. Technol. 330, 125001.
Khalid A., Arshad M., Anjum M., Mahmood T., Dawson L. (2011). The anaerobic digestion of solid organic waste. Waste Management 31(8) August 2011. https://doi.org/10. 1016/j.wasman.2011.03.021
Levén L., Nyberg K., Schnürer A. (2012). Conversion of phenols during anaerobic digestion of organic solid waste- A review of important microorganisms and impact of temperature. Journal of Environmental Management 95 (2012) S99-S103.
Levén L., Schnürer A. (2005). Effects of temperature on biological degradation of phenols, benzoates and phthalates under methanogenic conditions. Int. Biodegr. Biodeter. 55, 153-160.
Li J., Li J-X., Jiang H., Li M., Chen L., Wang Y-Y., Wang Lu., Zhang N., Guo H-Z., Ma K-L. (2023). Phytochemistry and bilogical activities of corynanthe alkaloids. Phytochemistry 213, 113786
Li Y., Chen Y., Wu J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 240, 120-137.
Li Y., Jin Y., Borrion A., Li H., Li J. (2017a). Effects of organic composition on the anaerobic biodegradability of food waste. Bioresource Technology 243, 836-845.
Li Y., Jin Y., Li J., Li H., Yu Z., Nie Y. (2017b). Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion. Energy. 118, 377-386.
Liu L., Zhang T., Wan H., Chen Y., Wang X., Yang G., Ren G. (2015). Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite. Energy Conv. Manag. 97, 132–139.
Lu B.Y., Wu X.Q., Tie X.W., Zhang Y., Zhang Y. (2005). Toxicology and safety of anti-oxidant of bamboo leaves. Part 1: acute and subchronic toxicity studies on anti-oxidant of bamboo leaves. Food Chem Toxicol. 2005;43(5):783-792. https://doi.org/10.1016/j.fct.2005.01.019.
Ma G., Ndegwa P., Harrison J.H., Chen Y. (2020). Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis. Sci. Total Environ. 728, 138224.
Makumbelo E., Lukoki L., Paulus J. Sj., N. Luyindula N. (2002). Inventaire des espèces végétales mises en culture dans les parcelles en milieu urbain. Cas de la commune de Limete-Kinshasa- R.D. Congo. Tropicultura, 2002, 20(2) 89-95.
Mambanzulua P.N., Hiligsmann S., Sumbu E.Z., Culot M., Fievez T., Thonart P. (2015a). Comparative study of the methane production based on the chemical compositions of Mangifera Indica and Manihot Utilissima leaves. SpringerPlus (2015) 4:75 doi10.1186/s40064-015-0832-y
Mambanzulua P.N., Hiligsmann S., Sumbu E.Z., Ongena M., Thonart P. (2015b). Potentiel d’élimination des déchets végétaux (feuilles de Mangifera Indica et de Manihot Utilissima) par méthanisation à Kinshasa (République Démocratique du Congo). [VertigO] La revue électronique en sciences de l’environnement, 15 (1).
Mariotti F., Tomé D., Mirand P.P. (2016). Converting Nitrogen into Protein- Beyond 6.25 and Jones’ Factors. Critical Reviews in Food Science and Nutrition, 48,177-184. https://doi.org/10.1080/10408390701279749
Monnet F. (2003). An introduction to anaerobic digestion of organic wastes” Remade, Scotland.
Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 79, 308-322.
Nikiema M., Somda M.K., Sawadogo J.B., Dianou D., Traoré A.S., Ouattara A.S. (2020). Valorization of Agricultural Waste: Theoretical Estimation and Experimental Biomethane Yield from Cashew Nut Hulls. Journal of Sustainable Bioenergy Systems, 2020, 10, 113-130.
Ojewole J.A.O., Amabeoku G.J. (2006). Anticonvulsant Effect of Persea americana Mill (Lauraceae) (Avocado) Leaf Aqueous Extract in Mice. Phytotherapy Research 20: 696-700.
Oke M.A., Sonibare J.A., Onakpohor A., Odunlami O.A., Akeredolu F.A., Elehinafe F.B. (2022). Proximate analysis of some common charcoal in Southwestern Nigeria. Results in Engineering 15, 100454.
Owen W.F., Stuckey D.C., Healy J.B., Young L.Y., McCarty P.L. (1979). Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 13, 485-492.
Paritosh K., Kushwaha S.K., Yadav M., Pareek N., Chawade A., Vivekanand V. (2017). Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. Biomed Research International, 2017.
Park S., Nam Y.H., Rodriguez I., Park J.H., Kwak H.J., Oh Y., Oh M., Park M.S., Lee K.W., Lee J.S., Kim D.H., Park Y.H., Moon I.S., Choung S-Y., Jeong K.W., Hong B.N., Kang T.H., Kim S.H. (2019). Chemical constituents of leaves of Persea americana (avocado) and their protective effects against neomycin-induced hair cell damage. Revista Brasileira de Farmacognosia 29(6) 739-743.
Paul, S., Dutta, A. (2018). Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour. Conserv. Recycl. 130, 164-174.
Paz A., Karnaouri A., Templis C.C., Papayannakos N., Topakas E. (2020). Valorization of exhausted olive pomace for the production of omega-3 fatty acids by Crypthecodinium cohnii. Waste Management 118, 435-444.
Peter B. Oelrichs, Jack C. Ng, Alan A. Seawright, Annemarie Ward, Lothar Schaffeler, J.K. Macleod. (1995). solation and Identification of a Compound From Avocado (Persea americana) Leaves Which Causes Necrosis of the Acinar Epithelium of the Lactating Mammary Gland and the Myocardium. Natural Toxins 3: 344-349.
Phuong N.T.L., Yabar H., Mizunoya T. (2021). Characterization and Analysis of Household Solid Waste Composition to Identify the Optimal Waste Management Method: A Case Study in Hanoi City, Vietnam. Earth (2) 1046-1058.
Putri D.A., Saputro R.R., Budiyono. (2012). Biogas Production from Cow Manure. Int. Journal of Renewable Energy Development 1 (2) 2012: 61-64.
Rathee D., Rathee P., Rathee S., Rathee D. (2012). Phytochemical screening and antimicrobial activity of Picrorrhiza kurroa, an Indian traditional plant used to treat chronic diarrhea. Arabian Journal of Chemistry (2012), http://dx.doi.org/10.1016/j.arabjc.2012.02.009
Rodriguez C., Hiligsmann S., Ongena M., Charlier R., Thonart P. (2005). Development of an enzymatic assay for the determination of cellulose bioavailability in municipal solid waste. Biodegradation 16: 415-422.
Sáez-Plaza P., Navas M.J., Wybraniec S., Michałowski T., Asuero A.G. (2013). An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control, Critical Reviews in Analytical Chemistry 43(4) 224-272.
Salamattalab M.M., Zonoozi M.H., Molavi-Arabshahi M. (2024). Innovative approach for predicting biogas production from large-scale anaerobic digester using long-short term memory (LSTM) coupled with genetic algorithm (GA). Waste Management 175 (2024) 30-41.
Schnurer A., Jarvis A. (2010). Microbiological handbook for biogas plants. Swedish Waste Management U, 2009, 1-74.
Shuku N.O. (2011). Impact de l'utilisation de l'énergie-bois dans la ville province de Kinshasa en République Démocratique du Congo (RDC). Mémoire de Master, Université du Québec, Canada.
Simbu A.V., Mangenda H.H., Puela F.P., Wamba E.K., Mutayiya F.T., et al. (2022). Etude de la gestion actuelle des déchets urbains à Kinshasa par observation le long de l’avenue université. 2022. ffhal-03565511v5f.
Sun Y., Wang D., Yan J., Qiao W., Wang W., Zhu T. (2014). Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes. Waste Management, 34, 1025-1034.
Sundberg C., Franke-Whittle I.H., Kauppi S., Yu D., Romantschuk M., Insam H., Jönsson H. (2011). Characterisation of source-separated household waste intended for composting. Bioresource Technology 102 (2011) 2859–2867.
Tamuli P., Saikia M., Boruah P. (2013). Post-Infectional Biochemical Changes in Cymbopogon martinii (Roxb.) Wats and Cymbopogon citratus (DC) Stapf. Due to Leaf Rust Disease. American Journal of Plant Sciences, 2013, 4, 1666-1668. http://dx.doi.org/10.4236/ajps.2013.48201
U Kun Kiran E., Trzcinski A.P., Ng W.J., Liu Y. (2014). Bioconversion of food waste to energy: A review. Fuel, 134, 389-399.
UNEP (United Nations Environment Program). (2018). Africa Waste Management Outlook, United Nations Environment Program, Nairobi, Kenya. https://wedocs.unep.org/handle/20.500.11822/25514
Wagner, H., Baldt, S., Zgainski, E.M. (1984). Plant Drug Analysis. Springer Verlag, Berlin/New York.
Wang K., Yin J., Shen D., Li N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresource Technology. 161, 395-401.
Wang L., Huang G., Hou R., Qi D., Wu Q., Nie Y., Zuo Z., Ma R., Zhou W., Ma Y., Hu Y., Yang Z., Yan L., Wei F. (2021). Multi-omics reveals the positive leverage of plant secondary metabolites on the gut microbiota in a non-model mammal. Microbiome (2021) 9:192. https://doi.org/10.1186/s40168-021-01142-6
Wang Y.S., Byrd C.S. and Barlaz M.A. (1994). Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. Journal of Indistrial Microbiology 13: 147-153.
Wassie Y.T., Adaramola M.S. (2019). Potential environmental impacts of small-scale renewable energy technologies in East Africa: A systematic review of the evidence. Renewable and Sustainable Energy Reviews 111, 377–391.
WHO (World Health Organization). (2023). WHO ambient air quality database, 2023 update : Version 6 Geneva : World Health Organization.
Wikandari R., Gudipudi S., Pandiyan I., Millati R., Taherzadeh M.J. (2013). Inhibitory effects of fruit flavors on methane production during anaerobic digestion. Bioresource Technology 145 (2013) 188-192.
Wu X., Yao W., Zhu J. (2010). Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int. J. Hydrog. Energy. 35 (13): 6592-6599.
Xiong H-H., Lin S-Y., Chen L-L., Ouyang K-H., Wang W-J. (2023). The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023, 12, 320. https://doi.org/10.3390/ foods12020320
Yang Z., Huang C., Liao F., Lam F.I., Li L., Qin Q., Fan B. (2023). Exploring the characteristics of solid waste management policy in the Guangdong-Hong-Macao greater bay area. Sustainability 15, 8160.
Zengin G., Aktumsek A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline Anatolica E. Tuzlaci: An endemic plant to turkey. Afr. J. Tradit. Complement. Altern. Med. 11 (2)481-488. [CrossRef] [PubMed] http://dx.doi.org/10.4314/ajtcam.v11i2.37
Zhang B., Zhang L.L., Zhang S.C, Shi H.Z., Cai W.M. (2005). The Influence of pH on Hydrolysis and Acidogenesis of Kitchen Wastes in Two-phase Anaerobic Digestion, Environmental Technology, 26:3, 329-340 http://dx.doi.org/10.1080/09593332608618563
Zhang W., Kong T., Xing W., Li R., Yang T., Yao N., Lv D. (2022). Links between carbon/nitrogen ratio, synergy and microbial characteristics of long-term semi-continuous anaerobic co-digestion of food waste, cattle manure and corn straw. Bioresource Technology 343 (2022) 126094.
Zhang W., Wang X., Xing W., Li R., Yang T., Yao N., Lv D. (2021). Links between synergistic effects and microbial community characteristics of anaerobic co-digestion of food waste, cattle manure and corn straw. Bioresour. Technol. 329, 124919.
Zhou J., Zhang R., Liu F., Yong X., Wu X., Zheng T., Jiang M., Jia H. (2016). Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour. Technol. 217, 44-49.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.