Abstract
Introduction
Cement mineral dust contains a variety of carcinogenic and non-carcinogenic substances that contribute to serious health effects.
Purpose
This study aimed to determine the ENT symptoms and diagnoses among workers exposed to cement dust.
Methods
A cross-sectional study was conducted between July and August 2024 among 270 workers in the exposed group (production, maintenance, transport, and handling workers) and 32 workers in the less exposed group (administrative staff and laboratory technicians) from the Kongo Cement Plant (CIMKO) in the DRC. A pre-designed questionnaire on ENT pathologies was administered to participants. Otoscopy, anterior rhinoscopy, and audiometry were performed. NO₂ (µg/m³) and SO₂ (µg/m³) concentrations were measured. Multivariate analysis was performed to determine the association between occupational exposure to cement dust and ENT symptoms and diagnoses.
Results
The annual average concentration of SO₂ was higher in the exposed group (15.54 µg/m³) and exceeded the threshold limit value (TLV) of the occupational exposure limit (OEL) adopted by NIOSH (2 ppm; 5 µg/m³). The exposed group had more than a sevenfold increased risk of pharyngitis, adjusted odds ratio (aOR) 7.4 (3.3–16.8), and more than a twofold increased risk of rhinitis, aOR 2.4 (1.4–4.1). Rhinosinusitis more than doubled the risk of presenting with pharyngitis and rhinitis, aOR 2.5 (1.6–3.9) and aOR 2.7 (1.2–6.5), respectively. Similarly, a duration of employment of ≥ 2 years increased the risk of pharyngitis more than fivefold, aOR 5.3 (3.6–15.2), and rhinitis more than threefold, aOR 3.6 (2.1–5.8).
Conclusions
Occupational exposure to cement dust was associated with ENT diagnoses, particularly a higher risk (5–21) of pharyngitis and rhinitis in the exposed group. This risk increased with longer duration of employment and a history of rhinosinusitis. Additionally, the mean concentration of SO₂ pollutants was higher in exposed workplaces compared with administrative areas.
References
Achternbosch, M., Bräutigam, K. R., Hartlieb, N., Kupsch, C., Richers, U., & Stemmermann, P. (2005). Impact of the use of waste on trace element concentrations in cement and concrete. Waste Management & Research, 23(4), 328–337. https://doi.org/10.1177/0734242X05056075
Ahmad, R., Akhter, Q. S., & Haque, M. (2021). Occupational cement dust exposure and inflammatory nemesis: Bangladesh relevance. Journal of Inflammation Research, 14, 2425–2444. https://doi.org/10.2147/JIR.S312960
Alcaide, M. L., & Bisno, A. L. (2007). Pharyngitis and epiglottitis. Infectious Disease Clinics of North America, 21(2), 449–469. https://doi.org/10.1016/j.idc.2007.03.001
Alekseenko, S. I., Skalny, A. V., Ajsuvakova, O. P., Skalnaya, M. G., Notova, S. V., & Tinkov, A. A. (2019). Mucociliary transport as a link between chronic rhinosinusitis and trace element dysbalance. Medical Hypotheses, 127, 5–10. https://doi.org/10.1016/j.mehy.2019.03.007
Bachert, C., Pawankar, R., Zhang, L., Bunnag, C., Fokkens, W. J., Hamilos, D. L., Jirapongsananuruk, O., Kern, R., Meltzer, E. O., & Mullol, J. (2014). ICON: chronic rhinosinusitis. World Allergy Organization Journal, 7, Article 25. https://doi.org/10.1186/1939-4551-7-25
Cha, K. T., Oh, S. S., Yoon, J. H., Lee, K. H., Kim, S. K., Cha, B. S., Kim, S. H., Eom, A. Y., & Koh, S. B. (2011). Adverse health outcomes in residents exposed to cement dust. Toxicology and Environmental Health Sciences, 3, 239–244. https://doi.org/10.1007/s13530-011-0101-6
Delabre, L., Pilorget, C., Garras, L., & Févotte, J. (2010). Éléments techniques sur l'exposition professionnelle aux poussières alvéolaires de silice cristalline libre: Présentation d'une matrice emplois-expositions. Institut de Veille Sanitaire.
Gupta, R., Majumdar, D., Trivedi, J., & Bhanarkar, A. (2012). Particulate matter and elemental emissions from a cement kiln. Fuel Processing Technology, 104, 343–351. https://doi.org/10.1016/j.fuproc.2012.06.007
Islam, F., Morshed, A., Rahman, M., Akhtar, P., Islam, M. J., Mahmud, A., Mary, M., & Heng, L. Y. (2015). Determination of heavy metals and trace elements in worldwide branded shampoo available in local market of Bangladesh by Atomic Absorption Spectrometry. Asian Journal of Chemistry, 27(10), 3756. https://doi.org/10.14233/ajchem.2015.18967
Kamaludin, N. H., Jalaludin, J., Tamrin, S. B. M., Akim, A. M., Martiana, T., & Widajati, N. (2020). Exposure to silica, arsenic, and chromium (VI) in cement workers: A probability health risk assessment. Aerosol and Air Quality Research, 20, 2347–2370. https://doi.org/10.4209/aaqr.2019.12.0656
Ja, S. H. (2006). Allergic rhinitis. Coexistent diseases and complications. A review and analysis. Revista Alergia México, 53(1), 9–29. https://europepmc.org/article/med/16634358
Joelsson, J. P., Kricker, J. A., Arason, A. J., Sigurdsson, S., Valdimarsdottir, B., Gardarsson, F. R., Page, C. P., Lehmann, F., Gudjonsson, T., & Ingthorsson, S. (2020). Azithromycin ameliorates sulfur dioxide-induced airway epithelial damage and inflammatory responses. Respiratory Research, 21, Article 89. https://doi.org/10.1186/s12931-020-01489-8
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087
Liu, H., Zhang, Z., Li, Q., Chen, T., Zhang, C., Chen, D., Zhu, C., & Jiang, Y. (2017). Novel method for preparing controllable nanoporous α-Fe2O3 and its reactivity to SCR De-NOx. Aerosol and Air Quality Research, 17(7), 1898–1908. https://doi.org/10.4209/aaqr.2017.05.0188
Manjula, R., Praveena, R., Clevin, R. R., Ghattargi, C., Dorle, A., & Lalitha, D. (2013). Effects of occupational dust exposure on the health status of portland cement factory workers. International Journal of Medicine & Public Health, 3(3), 192–196. https://doi.org/10.4103/2230-8598.118963
Martin, R., Dowling, K., Pearce, D., Sillitoe, J., & Florentine, S. (2014). Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences, 4(3), 128–175. https://doi.org/10.3390/geosciences4030128
Mehraj, S. S., Bhat, G., Balkhi, H. M., & Gul, T. (2013). Health risks for population living in the neighborhood of a cement factory. African Journal of Environmental Science and Technology, 7(12), 1044–1052. https://doi.org/10.5897/AJEST2013.1564
Meo, S. A., Rasheed, S., Khan, M. M., Shujauddin, S., & Al-Tuwaijri, A. S. (2008). Effect of cement dust exposure on phagocytic function of polymorphonuclear neutrophils in cement mill workers. International Journal of Occupational Medicine and Environmental Health, 21(2), 133–139. https://doi.org/10.2478/v10001-008-0017-9
Merenu, I., Mojiminiyi, F., Njoku, C., & Ibrahim, M. (2007). The effect of chronic cement dust exposure on lung function of cement factory workers in Sokoto, Nigeria. African Journal of Biomedical Research, 10(2), 139–143. [Archived: https://www.ajol.info/index.php/ajbr/article/view/50734]
Mohamed-Hussein, A., Elzayet, H., Ezzeldin, A., Khair, A., & Elkhayat, M. (2019). Risk factors associated with respiratory symptoms among cement workers. Chest, 156(4), A1718. https://doi.org/10.1016/j.chest.2019.08.1504
Ngombe, L. K., Nlandu, R. N., Ngombe, D. K. S., Ilunga, B. K., Okitotsho, S. W., Sakatolo, J. B. K., Numbi, O. L., & Danuser, B. (2019). Santé respiratoire des transporteurs du ciment dans la province du Haut-Katanga en République Démocratique du Congo. Environnement, Risques & Santé, 18(6), 500–507. https://doi.org/10.1051/ers/2019054
Nkhama, E., Ndhlovu, M., Dvonch, J. T., Siziya, S., & Voyi, K. (2015). Prevalence and determinants of mucous membrane irritations in a community near a cement factory in Zambia: A cross-sectional study. International Journal of Environmental Research and Public Health, 12(1), 871–887. https://doi.org/10.3390/ijerph120100871
Occupational Rhinitis Task Force, Moscato, G., Vandenplas, O., Gerth Van Wijk, R., Malo, J., Quirce, S., Walusiak, J., Castano, R., De Groot, H., & Folletti, I. (2008). Occupational rhinitis. Allergy, 63(8), 969–980. https://doi.org/10.1111/j.1398-9995.2008.01801.x
Roberts, G., Xatzipsalti, M., Borrego, L., Custovic, A., Halken, S., Hellings, P., Papadopoulos, N., Rotiroti, G., Scadding, G., & Timmermans, F. (2013). Paediatric rhinitis: Position paper of the European Academy of Allergy and Clinical Immunology. Allergy, 68(9), 1102–1116. https://doi.org/10.1111/all.12235
Sánchez-Soberón, F., Rovira, J., Mari, M., Sierra, J., Nadal, M., Domingo, J. L., & Schuhmacher, M. (2015). Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants. Atmospheric Environment, 120, 109–116. https://doi.org/10.1016/j.atmosenv.2015.08.020
Scadding, G. K. (2009). Rhinitis and sinusitis. In S. A. Ernst & G. T. Simonds (Eds.), Clinical Respiratory Medicine (3rd ed., pp. 409–423). Elsevier. https://doi.org/10.1016/B978-032304825-5.10032-7
Singh, V., & Pandey, D. (2011). Human health risk due to cement dust exposure. Policy Brief, Climate Change and CDM Cell, Rajasthan State Pollution Control Board, Jaipur, 1–19.
Song, A., Liao, Q., Li, J., Lin, F., Liu, E., Jiang, X., & Deng, L. (2012). Chronic exposure to sulfur dioxide enhances airway hyperresponsiveness only in ovalbumin-sensitized rats. Toxicology Letters, 214(3), 320–327. https://doi.org/10.1016/j.toxlet.2012.09.010
Wallace, D. V., Dykewicz, M. S., Bernstein, D. I., Blessing-Moore, J., Cox, L., Khan, D. A., Lang, D. M., Nicklas, R. A., Oppenheimer, J., & Portnoy, J. M. (2008). The diagnosis and management of rhinitis: An updated practice parameter. Journal of Allergy and Clinical Immunology, 122(2), S1–S84. https://doi.org/10.1016/j.jaci.2008.06.003
Ye, M., Liu, H., Li, H., Liu, Q., Zhou, Z., Wang, T., & Tan, G. (2022). Long-term exposure to sulfur dioxide before sensitization decreased the production of specific IgE in HDM-sensitized allergic rhinitis mice. Journal of Inflammation Research, 15, 2477–2490. https://doi.org/10.2147/JIR.S352397
Zhang, L., Yi, H., & Sang, N. (2021). Sulfur dioxide-induced exacerbation of airway inflammation via reactive oxygen species production and the toll-like receptor 4/nuclear factor-κB pathway in asthmatic mice. Toxicology and Industrial Health, 37(9), 564–572. https://doi.org/10.1177/07482337211033136

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.