Abstract
The CRISPR–Cas9 system is a highly promising and versatile platform for genome editing with significant potential for gene therapy. It employs locus-specific nucleases, guided by programmable RNAs, to cleave target DNA sites and introduce double-strand breaks, thereby enabling precise genome modification through endogenous DNA repair mechanisms. This review aims to elucidate the relationship between CRISPR–Cas9 technology and inherited blood disorders, and to highlight the most important evidence-based recommendations for the diagnosis and effective management of these conditions. The review synthesises recent literature—including clinical trials, systematic reviews, and meta-analyses published between 2019 and 2022—identified through comprehensive searches of Web of Science, PubMed, PMC, ScienceDirect, Frontiers in Genome Editing, OJRD, AMJ Med, and Google Books using terms such as CRISPR–Cas9 system and inherited blood disorders. Studies involving gene modification of haematopoietic cells form the foundation for discussing contemporary models of blood diseases. We also summarise the applications of gene modification in experimental, preclinical, and clinical haematology, including gene-function interference, target identification, drug discovery, and chimeric antigen receptor or T-cell receptor engineering. Future research should prioritise the optimisation of delivery systems, improvement of target specificity, and evaluation of long-term safety. We hope that this review will support haematology practitioners and genetic research specialists in deepening their understanding of the impact of CRISPR–Cas9 on human biology and promote greater awareness across the healthcare system. Finally, we discuss the rapidly evolving landscape of haematology and the ongoing advancements in CRISPR–Cas9 technology that are poised to further transform the field.
References
Abogosh, A., Alhomidi Almotiri, A., Abdelfattah, A., Alowaisy, D., & Rodrigues, N. P. (2025). Treating genetic blood disorders in the era of CRISPR-mediated genome editing. Molecular Therapy, 33(6), 2645–2662.
Adashi, E. Y., et al. (2023). CRISPR therapy of sickle cell disease: The dawning of the gene editing era. The American Journal of Medicine, 137(5), 390–392. https://doi.org/10.1016/j.amjmed.2023.12.018
Ablain, J., Durand, E. M., Yang, S., Zhou, Y., & Zon, L. I. (2015). Hematological defects in zebrafish can be efficiently corrected using CRISPR-Cas9 genome editing. Blood, 126(5), 525–527. https://doi.org/10.1182/blood-2015-02-625665.
Auerbach, A. D. (2009). Fanconi anemia and its diagnosis. Mutation Research, 668(1–2), 4–10. https://doi.org/10.1016/j.mrfmmm.2009.01.013
Ball, S. (2011). Diamond Blackfan anemia. Hematology: American Society of Hematology Education Program, 2011, 487–491. https://doi.org/10.1182/asheducation-2011.1.487
Bennett, B., & Ratnoff, O. D. (1973). Detection of the carrier state for classic hemophilia. The New England Journal of Medicine, 288(7), 342–345. https://doi.org/10.1056/NEJM197302152880704
Behrouzian Fard, G., Ahmadi, M. H., Gholamin, M., & Hosseini Bafghi, M. (2025). CRISPR-Cas9: A prominent genome editing tool in the management of inherited blood disorders and hematological malignancies. Current Research in Translational Medicine, 73(4), 103531.
Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., Cavallesco, R., Gillet-Legrand, B., Caccavelli, L., Sgarra, R., Maouche-Chrétien, L., Bernaudin, F., Girot, R., Dorazio, R., Mulder, G. J., Polack, A., … Leboulch, P. (2010). Transfusion independence and HMGA2 activation after gene therapy of human β-thalassemia. Nature, 467(7313), 318–322. https://doi.org/10.1038/nature09328
Chehelgerdi, M., Abbasi, E., & Baghaban, E. (2024). Advances in CRISPR-Cas9 applications for inherited blood disorders. Frontiers in Hematology, 6, 1468952.
Conti, A., Giannetti, K., Midena, F., Beretta, S., Gualandi, N., De Marco, R., … Di Micco, R. (2025). Senescence and inflammation are unintended adverse consequences of CRISPR-Cas9/AAV6-mediated gene editing in hematopoietic stem cells. Cell Reports Medicine, 6(6), 102157. https://doi.org/10.1016/j.xcrm.2025.102157
Drachman, J. G. (2004). Inherited thrombocytopenia: When a low platelet count does not mean ITP. Blood, 103(2), 390–398. https://doi.org/10.1182/blood-2003-05-1742
Du, Y., Liu, Y., Hu, J., Peng, X., & Liu, Z. (2023). CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian Journal of Pharmaceutical Sciences, 18(6), 100854. https://doi.org/10.1016/j.ajps.2023.100854
Fang, T., Cao, X., Ibnat, M., & Chen, G. (2022). Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. Journal of Nanobiotechnology, 20(1), 354. https://doi.org/10.1186/s12951-022-01570-y
Finotti, A., Gambari, R., & Cao, A. (2015). CRISPR/Cas9-mediated gene correction for β-thalassemia and other hemoglobinopathies. Human Gene Therapy, 26(9), 637–644. https://doi.org/10.1089/hum.2015.041.
Foley, R. A., Sims, R. A., Duggan, E. C., Olmedo, J. K., Ma, R., & Jonas, S. J. (2022). Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Frontiers in Bioengineering and Biotechnology, 10, 973326. https://doi.org/10.3389/fbioe.2022.973326
Frontiers in Genome Editing. (2022). CRISPR-Cas9 genome editing technologies: Current strategies and applications. Frontiers in Genome Editing, 4, 1037290. https://doi.org/10.3389/fgeed.2022.1037290
High, K. A. (2012). The gene therapy journey for hemophilia: Are we there yet? Blood, 120(23), 4482–4487. https://doi.org/10.1182/blood-2012-05-423210
Hoban, M. D., Orkin, S. H., & Bauer, D. E. (2016). Genetic treatment of a molecular disorder: Gene therapy approaches to sickle cell disease. Blood, 127(7), 839–848. https://doi.org/10.1182/blood-2015-09-618587
Hoban, M. D., Cost, G. J., Mendel, M., Romero, Z., Kaufman, M. L., Martin, R. M., … Porteus, M. H. (2016). Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood, 127(17), 2607–2614. https://doi.org/10.1182/blood-2015-12-682330
Huang, X., Wang, Y., Yan, W., Smith, C., Ye, Z., Wang, J., Gao, Y., Mendelsohn, L., & Cheng, L. (2015). Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells, 33(5), 1470–1479. https://doi.org/10.1002/stem.1969
Iqbal, Z., Rehman, K., Xia, J., Shabbir, M., Zaman, M., Liang, Y., & Duan, L. (2023). Biomaterial-assisted targeted and controlled delivery of CRISPR/Cas9 for precise gene editing. Biomaterials Science, 11(11), 3762–3783. https://doi.org/10.1039/d2bm01636b
Jing, X. (2024). A review of research on CRISPR/Cas9 gene editing technology in disease treatment. Academic Journal of Science and Technology, 13, 132–134.
Kabrah, S. M. (2025). Emerging gene therapies in sickle cell disease: A comparative review of efficacy and safety against standard treatments. Journal of Blood Medicine, 16, 493–507. https://doi.org/10.2147/JBM.S556513
Kolanu, N. D. (2024). CRISPR-Cas9 gene editing: Curing genetic diseases by inherited epigenetic modifications. Global Medical Genetics, 11(1), 113–122.
Lei, L., Pan, W., Shou, X., Shao, Y., Ye, S., Zhang, J., Kolliputi, N., & Shi, L. (2024). Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases. Journal of Nanobiotechnology, 22(1), 343. https://doi.org/10.1186/s12951-024-02627-w
Lin, Y., Wagner, E., & Lächelt, U. (2022). Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomaterials Science, 10(5), 1166–1192. https://doi.org/10.1039/d1bm01658j
Lu, X., Happi Mbakam, C., Song, W., & Tremblay, J. P. (2022). Genome editing strategies for inherited hematological disorders. Stem Cell Reviews and Reports, 18(5), 2123–2136.
Maganti, H. B., Bailey, A. J. M., Kirkham, A. M., Shorr, R., Pineault, N., & Allan, D. S. (2021). Persistence of CRISPR/Cas9 gene edited hematopoietic stem cells following transplantation: A systematic review and meta-analysis of preclinical studies. Stem Cells Translational Medicine, 10(7), 996–1007.
Mattiuzzi, C., & Lippi, G. (2020). Updated worldwide epidemiology of inherited erythrocyte disorders. Acta Haematologica, 143(3), 196–203. https://doi.org/10.1159/000502434
McIntosh, J., Lenting, P., Rosales, C., Lee, D., & Nathwani, A. (2023). Clinical gene therapy for hemophilia using CRISPR/Cas9 approaches. The American Journal of Medicine, 136(9), 798–809.
Nathwani, A. C., et al. (2011). Adeno-associated virus vector-mediated gene transfer in hemophilia B. The New England Journal of Medicine, 365(25), 2357–2365. https://doi.org/10.1056/NEJMoa1108046
Ojo, T. T., Amegbor, P. M., Islam, F., Gyamfi, J., Mai, A., Malburg, C. M., … Peprah, E. K. (2025). Burden of hemoglobinopathies and hemolytic anemias in the World Health Organization African region, 2000–2021. PLOS Global Public Health, 5(9), e0005197. https://doi.org/10.1371/journal.pgph.0005197
Quintana-Bustamante, O., Fañanas-Baquero, S., Dessy-Rodriguez, M., Ojeda-Pérez, I., & Segovia, J. C. (2022). Gene editing for inherited red blood cell diseases. Frontiers in Physiology, 13, 848261. https://doi.org/10.3389/fphys.2022.848261
Schiroli, G., et al. (2019). Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response. Cell Stem Cell, 24(4), 551–565.e8. https://doi.org/10.1016/j.stem.2019.02.019
Seijas, A., Cora, D., Novo, M., Al-Soufi, W., Sánchez, L., & Arana, Á. J. (2025). CRISPR/Cas9 delivery systems to enhance gene editing efficiency. International Journal of Molecular Sciences, 26(9), 4420. https://doi.org/10.3390/ijms26094420
Shi, L., Yan, X., Xia, Y., et al. (2025). Beyond transfusions and transplants: Genomic innovations rewriting the narrative of thalassemia. Annals of Hematology, 104, 3963–3980. https://doi.org/10.1007/s00277-025-06548-y
Sioson, V. A., Kim, M., & Joo, J. (2021). Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomedical Engineering Letters, 11(3), 217–233. https://doi.org/10.1007/s13534-021-00199-4
Soulier, J. (2011). Fanconi anemia. Hematology: American Society of Hematology Education Program, 2011, 492–497. https://doi.org/10.1182/asheducation-2011.1.492
Taniguchi, T., & D’Andrea, A. D. (2006). Molecular pathogenesis of Fanconi anemia: Recent progress. Blood, 107(11), 4223–4233. https://doi.org/10.1182/blood-2005-10-4240
Vlachos, A., Ball, S., Dahl, N., et al. (2008). Diagnosing and treating Diamond Blackfan anaemia. British Journal of Haematology, 142(6), 859–876. https://doi.org/10.1111/j.1365-2141.2008.07269.x
Vlachos, A., Federman, N., Reyes-Haley, C., Abramson, J., & Lipton, J. M. (2001). Hematopoietic stem cell transplantation for Diamond Blackfan anemia. Bone Marrow Transplantation, 27(4), 381–386. https://doi.org/10.1038/sj.bmt.1702784
Weatherall, D. J. (2010). The inherited diseases of hemoglobin are an emerging global health burden. Blood, 115(22), 4331–4336. https://doi.org/10.1182/blood-2010-01-251348
Wendt, A. S., Brintrup, J., Waid, J. L., et al. (2023). Thalassemia and hemoglobinopathy prevalence in a community-based sample in Sylhet, Bangladesh. Orphanet Journal of Rare Diseases, 18, 192. https://doi.org/10.1186/s13023-023-02821-3
World Health Organization. (2006). Thalassaemia and other haemoglobinopathies (Executive Board 118th Session).
Zhang, H., & McCarty, N. (2016). CRISPR-Cas9 technology and its application in haematological disorders. British Journal of Haematology, 175(2), 208–225.
Zheng, J. (2025). CRISPR-Cas9 gene editing for β-hemoglobinopathies therapy. Theoretical and Natural Science, 117, 134–139.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
