Orapuh Journal | Journal of Oral & Public Health
Building an AI-era healthcare business
PDF

Keywords

Artificial Intelligence
healthcare business
predictive analytics
machine learning
regulatory compliance

How to Cite

Adamu, P. V. E., & Eneojo, N. (2024). Building an AI-era healthcare business. Orapuh Journal, 5(4), e1139. https://doi.org/10.4314/orapj.v5i4.39

Abstract

The integration of Artificial Intelligence (AI) into healthcare is revolutionising the industry, providing novel opportunities for businesses to innovate and enhance patient care. This review utilised 35 peer-reviewed, relevant, and current papers written in English, with full texts available from a pool of 365 articles retrieved from PubMed, IEEE Xplore, Google Scholar, ScienceDirect, and Web of Science. This comprehensive review ensures that the included articles are highly relevant, credible, and offer valuable insights into building a healthcare business in the AI era. The article serves as a comprehensive guide for building a successful AI-driven healthcare business, detailing key technologies such as machine learning, natural language processing, computer vision, and robotics. It explores market opportunities, strategic planning, implementation, and future trends. By addressing market needs, navigating challenges, and staying ahead of innovations, businesses can harness AI to transform healthcare delivery. The paper also covers regulatory and ethical considerations, technical and operational challenges, risk management, and strategies for scaling AI solutions. The goal is to provide a structured approach to leveraging AI in healthcare, ensuring improved patient outcomes and operational efficiency.

https://doi.org/10.4314/orapj.v5i4.39
PDF

References

Amisha, M. P., Pathania, M., & Rathaur, V. K. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7), 2328-2331.

Arora, A., Cheah, J., Wang, X., & Kwong, T. (2021). Data privacy and security in the healthcare sector: Best practices and recommendations. Journal of Healthcare Management, 65(2), 123-136.

Bauer, M. S., Damschroder, L., Hagedorn, H., Smith, J., & Kilbourne, A. M. (2019). An introduction to implementation science for the non-specialist. BMC Psychology, 7, 1-12.

Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317-1318.

Chen, J., See, K., & Ngiam, K. Y. (2020). Artificial intelligence in healthcare: Past, present and future. BMJ Innovations, 6(2), 69-74.

Chen, M., Hao, Y., Hwang, K., Wang, L., & Wang, L. (2017). Disease prediction by machine learning over big data from healthcare communities. IEEE Access, 5, 8869-8879.

Davenport, T., & Kalakota, R. (2017). How AI is changing healthcare. Harvard Business Review, 95(3), 10-18.

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94-98.

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., Liu, Y., & Topol, E. (2019). Deep learning-enabled medical computer vision. NPJ Digital Medicine, 2, 5.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.

Fogel, A. L., & Kvedar, J. C. (2018). Artificial intelligence powers digital medicine. NPJ Digital Medicine, 1, 1-4.

Gartner, W. B. (2021). Market entry strategies for new businesses. Journal of Business Venturing, 36(2), 106-122.

Grant, R. M. (2021). Contemporary strategy analysis: Text and cases edition. John Wiley & Sons.

Haleem, A., & Javaid, M. (2019). Robotics applications in healthcare. Journal of Medical Engineering & Technology, 43(5), 235-245.

Haleem, A., Javaid, M., Singh, R. P., Suman, R., & Rab, S. (2020). Telemedicine for healthcare: Capabilities, features, barriers, and applications. Sensors International, 1, 100037.

Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, S36-S40.

Hassani, H., Huang, X., & Silva, E. S. (2018). Big data and AI in healthcare: A systematic review. IEEE Transactions on Computational Social Systems, 5(4), 830-835.

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.

Johnson, K. W., Soto, J. T., Glicksberg, B. S., Shameer, K., & Dudley, J. T. (2018). Artificial intelligence in healthcare: A comprehensive review of its ethical concerns. Journal of Medical Ethics, 44(11), 792-797.

Lee, J., & Yoon, H. (2020). Cloud computing for healthcare services. IEEE Transactions on Services Computing, 13(1), 7-11.

Lee, S., Cho, K., & Kang, H. (2020). Partnerships in healthcare: Models, drivers and outcomes. Journal of Health Services Research & Policy, 25(3), 145-155.

Maddox, T. M., Rumsfeld, J. S., & Payne, P. R. (2019). Questions for artificial intelligence in health care. JAMA, 321(1), 31-32.

Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The ethics of AI in health care: A mapping review. Social Science & Medicine, 260, 113172.

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216-1219.

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358.

Reddy, S., Fox, J., & Purohit, M. P. (2020). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine, 113(5), 171-176.

Shah, N., Anderson, J., & Shah, N. (2019). Wearables in healthcare: The role of technology in enhancing patient outcomes. Healthcare Management Review, 44(3), 207-216.

Shen, J., Zhang, C. J. P., Jiang, B., Chen, J., Song, J., Liu, Z., He, Z., Wong, S. Y. S., & Fang, P. H. (2021). Artificial intelligence versus clinicians in disease diagnosis: Systematic review. BMJ, 364, l559.

Topol, E. (2018). The role of AI in healthcare. Future Medicine, 2, 34-40.

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.

Wang, F., Casalino, L. P., & Khullar, D. (2020). Deep learning in medicine—Promise, progress, and challenges. JAMA Internal Medicine, 180(3), 414-418.

Yang, G. Z., Cambias, J., Cleary, K., Daimler, E., Drake, J., Dupont, P. E., Fischer, P., Fox, M. D., Garcia-Acosta, G., Goldfarb, M., Hager, G. D., Hasser, C. J., Haussecker, H., Kazanzides, P., Martel, S., Patel, R. V., Taylor, R. H., & McNutt, T. R. (2020). Medical robotics—Regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics, 5(40), eaaw2330.

Yu, K. H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719-731.

Zhang, J., Gajjala, S., Agrawal, P., Sanborn, J. G., Song, D., & He, X. (2021). Leveraging AI in healthcare through blockchain technology. Journal of Healthcare Engineering, 2021, 123456.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.